19 research outputs found

    Special Libraries, May-June 1932

    Get PDF
    Volume 23, Issue 5https://scholarworks.sjsu.edu/sla_sl_1932/1004/thumbnail.jp

    Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe

    Get PDF
    Exposure to radiofrequency electromagnetic fields (RF-EMF) has rapidly increased and little is known about exposure levels in children. This study describes personal RF-EMF environmental exposure levels from handheld devices and fixed site transmitters in European children, the determinants of this, and the day-to-day and year-to-year repeatability of these exposure levels.; Personal environmental RF-EMF exposure (ÎŒW/m; 2; , power flux density) was measured in 529 children (ages 8-18 years) in Denmark, the Netherlands, Slovenia, Switzerland, and Spain using personal portable exposure meters for a period of up to three days between 2014 and 2016, and repeated in a subsample of 28 children one year later. The meters captured 16 frequency bands every 4 s and incorporated a GPS. Activity diaries and questionnaires were used to collect children's location, use of handheld devices, and presence of indoor RF-EMF sources. Six general frequency bands were defined: total, digital enhanced cordless telecommunications (DECT), television and radio antennas (broadcast), mobile phones (uplink), mobile phone base stations (downlink), and Wireless Fidelity (WiFi). We used adjusted mixed effects models with region random effects to estimate associations of handheld device use habits and indoor RF-EMF sources with personal RF-EMF exposure. Day-to-day and year-to-year repeatability of personal RF-EMF exposure were calculated through intraclass correlations (ICC).; Median total personal RF-EMF exposure was 75.5â€ŻÎŒW/m; 2; . Downlink was the largest contributor to total exposure (median: 27.2â€ŻÎŒW/m; 2; ) followed by broadcast (9.9â€ŻÎŒW/m; 2; ). Exposure from uplink (4.7â€ŻÎŒW/m; 2; ) was lower. WiFi and DECT contributed very little to exposure levels. Exposure was higher during day (94.2â€ŻÎŒW/m; 2; ) than night (23.0â€ŻÎŒW/m; 2; ), and slightly higher during weekends than weekdays, although varying across regions. Median exposures were highest while children were outside (157.0â€ŻÎŒW/m; 2; ) or traveling (171.3â€ŻÎŒW/m; 2; ), and much lower at home (33.0â€ŻÎŒW/m; 2; ) or in school (35.1â€ŻÎŒW/m; 2; ). Children living in urban environments had higher exposure than children in rural environments. Older children and users of mobile phones had higher uplink exposure but not total exposure, compared to younger children and those that did not use mobile phones. Day-to-day repeatability was moderate to high for most of the general frequency bands (ICCs between 0.43 and 0.85), as well as for total, broadcast, and downlink for the year-to-year repeatability (ICCs between 0.49 and 0.80) in a small subsample.; The largest contributors to total personal environmental RF-EMF exposure were downlink and broadcast, and these exposures showed high repeatability. Urbanicity was the most important determinant of total exposure and mobile phone use was the most important determinant of uplink exposure. It is important to continue evaluating RF-EMF exposure in children as device use habits, exposure levels, and main contributing sources may change

    Exposure modelling of extremely low-frequency magnetic fields from overhead power lines and its validation by measurements

    No full text
    A three-dimensional model for calculating long term exposure to extremely low-frequency magnetic fields from high-voltage overhead power lines is presented, as well as its validation by measurements. For the validation, the model was applied to two different high-voltage overhead power lines in Iffwil and Wiler (Switzerland). In order to capture the daily and seasonal variations, each measurement was taken for 48 h and the measurements were carried out six times at each site, at intervals of approximately two months, between January and December 2015. During each measurement, a lateral transect of the magnetic flux density was determined in the middle of a span from nine measurement points in the range of ±80 m. The technical data of both the lines as well as the load flow data during the measurement periods were provided by the grid operators. These data were used to calculate 48 h averages of the absolute value of the magnetic flux density and compared with modelled values. The highest 48 h average was 1.66 ”T (centre of the line in Iffwil); the lowest 48 h average was 22 nT (80 m distance from the centre line in Iffwil). On average, the magnetic flux density was overestimated by 2% (standard deviation: 9%) in Iffwil and underestimated by 1% (8%) in Wiler. Sensitivity analyses showed that the uncertainty is mainly driven by errors in the coordinates and height data. In particular, for predictions near the centre of the line, an accurate digital terrain model is critical

    Analysis of personal and bedroom exposure to ELF-MFs in children in Italy and Switzerland

    No full text
    Little is known about the real everyday exposure of children in Europe to extremely low-frequency magnetic fields (ELF-MFs). The aims of this study are to (i) assess personal ELF-MF exposure in children; (ii) to identify factors determining personal and bedroom ELF-MF exposure measurements in children; (iii) to evaluate the reproducibility of exposure summary measures; and (iv) to compare personal with bedroom measurements. In Switzerland and Italy, 172 children aged between 5 and 13 years were equipped with ELF-MF measurement devices (EMDEX II, measuring 40-800 Hz) during 24-72 h twice, in the warm and the cold season. In addition, 24-h measurements were taken in the bedroom of children. In our study, sample geometric mean ELF-MF exposure was 0.04 ΌT for personal and 0.05 ΌT for bedroom measurements. Living within 100 m of a highest voltage power line increased geometric mean personal exposure by a factor of 3.3, and bedroom measurements by a factor 6.8 compared to a control group. Repeated measurements within the same subject showed high reproducibility for the geometric mean (Spearman's correlation 0.78 for personal and 0.86 for bedroom measurements) but less for the 95th and 99th percentile of the personal measurements (≀0.42). Spearman's correlation between bedroom and personal exposure was 0.86 for the geometric mean but considerably lower for the 95th and 99th percentiles (≀0.60). Most previous studies on ELF-MF childhood leukaemia used mean bedroom exposure. Our study demonstrates that geometric mean bedroom measurements is well correlated with personal geometric mean exposure, and has high temporal reproducibility

    Children’s Personal Exposure Measurements to Extremely Low Frequency Magnetic Fields in Italy

    No full text
    Extremely low frequency magnetic fields (ELF-MFs) exposure is still a topic of concern due to their possible impact on children’s health. Although epidemiological studies claimed an evidence of a possible association between ELF-MF above 0.4 ÎŒT and childhood leukemia, biological mechanisms able to support a causal relationship between ELF-MF and this disease were not found yet. To provide further knowledge about children’s ELF-MF exposure correlated to children’s daily activities, a measurement study was conducted in Milan (Italy). Eighty-six children were recruited, 52 of whom were specifically chosen with respect to the distance to power lines and built-in transformers to oversample potentially highly exposed children. Personal and bedroom measurements were performed for each child in two different seasons. The major outcomes of this study are: (1) median values over 24-h personal and bedroom measurements were <3 ÎŒT established by the Italian law as the quality target; (2) geometric mean values over 24-h bedroom measurements were mostly <0.4 ÎŒT; (3) seasonal variations did not significantly influence personal and bedroom measurements; (4) the highest average MF levels were mostly found at home during the day and outdoors; (5) no significant differences were found in the median and geometric mean values between personal and bedroom measurements, but were found in the arithmetic mean

    Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents

    No full text
    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF).; The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body.; Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents.; Main contributors to the total personal RF-EMF measurements of 63.2ÎŒW/m(2) (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose.; RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role

    Characterisation of exposure to non-ionising electromagnetic fields in the Spanish INMA birth cohort: study protocol

    Get PDF
    Background: Analysis of the association between exposure to electromagnetic fields of non-ionising radiation (EMF-NIR) and health in children and adolescents is hindered by the limited availability of data, mainly due to the difficulties on the exposure assessment. This study protocol describes the methodologies used for characterising exposure of children to EMF-NIR in the INMA (INfancia y Medio Ambiente- Environment and Childhood) Project, a prospective cohort study. Methods/Design: Indirect (proximity to emission sources, questionnaires on sources use and geospatial propagation models) and direct methods (spot and fixed longer-term measurements and personal measurements) were conducted in order to assess exposure levels of study participants aged between 7 and 18 years old. The methodology used varies depending on the frequency of the EMF-NIR and the environment (homes, schools and parks). Questionnaires assessed the use of sources contributing both to Extremely Low Frequency (ELF) and Radiofrequency (RF) exposure levels. Geospatial propagation models (NISMap) are implemented and validated for environmental outdoor sources of RFs using spot measurements. Spot and fixed longer-term ELF and RF measurements were done in the environments where children spend most of the time. Moreover, personal measurements were taken in order to assess individual exposure to RF. The exposure data are used to explore their relationships with proximity and/or use of EMF-NIR sources. Discussion: Characterisation of the EMF-NIR exposure by this combination of methods is intended to overcome problems encountered in other research. The assessment of exposure of INMA cohort children and adolescents living in different regions of Spain to the full frequency range of EMF-NIR extends the characterisation of environmental exposures in this cohort. Together with other data obtained in the project, on socioeconomic and family characteristics and development of the children and adolescents, this will enable to evaluate the complex interaction between health outcomes in children and adolescents and the various environmental factors that surround them.This study was funded by grants from the Spanish Instituto de Salud Carlos III Health Institute (PI13/02187 incl. FEDER funds, CP13/00054 incl. FEDER funds, MS13/00054), the councils of the study region of Gipuzkoa and the EU Commission (603794)
    corecore