126 research outputs found

    Hibernacula Site Selection of the Eastern Box Turtle, Terrapene c. carolina, in a West Virginia Population

    Get PDF
    Eastern Box Turtles (Terrapene c. carolina) are a terrestrially hibernating reptile found throughout the eastern United States. Despite their prevalence, little, outside of anecdotal observations, is known about their hibernacula selection. This study examines if they preferentially select hibernacula locations, and if so, what characteristics they select in a West Virginia population. Over the course of two years, radio-tagged turtles (n=12) were followed into hibernation in Wayne County, WV. Upon entering hibernation, ~36 data point were collected in a grid-like fashion around the hibernacula, with an additional point collected at the hibernacula. At each point, seven variables were recorded: soil temperature, soil compaction, soil moisture, soil pH, cover depth, cover moisture, and cover type. Results were analyzed using either categorical logistic regression for quantitative data or Ivlev’s (E) and Vanderploeg and Scavia’s (E*) electivity indices for categorical data. The conditional logistical regression showed a significant selection for both soil compaction (p=0.029) and cover depth (p=0.007). The two electivity indices showed a strong selection for mixed deciduous leaf litter as a cover type (E= 0.1264, E*= 0.4486). Thus, Eastern Box Turtles significantly select hibernacula sites with soft, friable soil, where they may dig easier, along with a thick cover of deciduous leaf litter, which provides increased insulation during the winter months. These results correspond with recorded anecdotal observations, thus suggesting this study may have validity throughout much of Terrapene c. carolina’s range, and provide an avenue for further study of their winter ecology, which is necessary for their continuing protection

    Categorization, Intersectionality, and Learning Analytics

    Full text link
    Extended abstract from the LAK 2018 Conference in Sydney AustraliaLearning analytics often relies on data produced by education systems which include traditional categorical descriptors of identity. Uncritical use of these reductive categories obscures the complexity of identity and masks the unique experience of each student. If learning analytics is to accomplish its goal of understanding and improving teaching and learning for all students, it must examine the methods it uses to account for social identity more closely. In this work, we describe how feminist studies of intersectionality have informed our own analysis of how social identity might influence student performance in an array of large introductory courses.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144579/1/LAK18 REA Categorization and Intersectionality in Learning Analytics v1.2.pdfDescription of LAK18 REA Categorization and Intersectionality in Learning Analytics v1.2.pdf : Main Articl

    The Dust Content of Galaxy Clusters

    Full text link
    We report on the detection of reddening toward z ~ 0.2 galaxy clusters. This is measured by correlating the Sloan Digital Sky Survey cluster and quasar catalogs and by comparing the photometric and spectroscopic properties of quasars behind the clusters to those in the field. We find mean E(B-V) values of a few times 10^-3 mag for sight lines passing ~Mpc from the clusters' center. The reddening curve is typical of dust but cannot be used to distinguish between different dust types. The radial dependence of the extinction is shallow near the cluster center suggesting that most of the detected dust lies at the outskirts of the clusters. Gravitational magnification of background z ~ 1.7 sources seen on Mpc (projected) scales around the clusters is found to be of order a few per cent, in qualitative agreement with theoretical predictions. Contamination by different spectral properties of the lensed quasar population is unlikely but cannot be excluded.Comment: 4 pages, 3 figure

    Extrinsic Sources of Scatter in the Richness-Mass Relation of Galaxy Clusters

    Full text link
    Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness-mass relation of galaxy maxBCG clusters at the low mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using SDSS data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely (\approx 1% - 5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is \approx 5% - 15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling

    Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    Full text link
    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment.Comment: 33 pages, 14 Figures; A typo in Eq.A11 is fixed. The C++/Python codes for ECGMM can be downloaded from: https://sites.google.com/site/jiangangecgmm

    Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    Get PDF
    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. 2007 (Paper I). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys

    Constraining the Scatter in the Mass-Richness Relation of maxBCG Clusters With Weak Lensing and X-ray Data

    Get PDF
    We measure the logarithmic scatter in mass at fixed richness for clusters in the maxBCG cluster catalog, an optically selected cluster sample drawn from SDSS imaging data. Our measurement is achieved by demanding consistency between available weak lensing and X-ray measurements of the maxBCG clusters, and the X-ray luminosity--mass relation inferred from the 400d X-ray cluster survey, a flux limited X-ray cluster survey. We find \sigma_{\ln M|N_{200}}=0.45^{+0.20}_{-0.18} (95% CL) at N_{200} ~ 40, where N_{200} is the number of red sequence galaxies in a cluster. As a byproduct of our analysis, we also obtain a constraint on the correlation coefficient between \ln Lx and \ln M at fixed richness, which is best expressed as a lower limit, r_{L,M|N} >= 0.85 (95% CL). This is the first observational constraint placed on a correlation coefficient involving two different cluster mass tracers. We use our results to produce a state of the art estimate of the halo mass function at z=0.23 -- the median redshift of the maxBCG cluster sample -- and find that it is consistent with the WMAP5 cosmology. Both the mass function data and its covariance matrix are presented.Comment: 14 pages, 6 figures, submitted to Ap

    Cosmological Constraints from the SDSS maxBCG Cluster Catalog

    Get PDF
    We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness--mass relation of the clusters. Assuming a flat \LambdaCDM cosmology, we find \sigma_8(\Omega_m/0.25)^{0.41} = 0.832\pm 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness--mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find \sigma_8=0.807\pm 0.020 and \Omega_m=0.265\pm 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.Comment: comments welcom

    Alignment of Brightest Cluster Galaxies with their Host Clusters

    Full text link
    We examine the alignment between Brightest Cluster Galaxies (BCGs) and their host clusters in a sample of 7031 clusters with 0.08<z<0.44 found using a matched-filter algorithm and an independent sample of 5744 clusters with 0.1<z<0.3 selected with the maxBCG algorithm, both extracted from the Sloan Digital Sky Survey Data Release 6 imaging data. We confirm that BCGs are preferentially aligned with the cluster's major axis; clusters with dominant BCGs (>0.65 mag brighter than the mean of the second and third ranked galaxies) show stronger alignment than do clusters with less dominant BCGs at the 4.4 sigma level. Rich clusters show a stronger alignment than do poor clusters at the 2.3 sigma level. Low redshift clusters (z<0.26) show more alignment than do high redshift (z>0.26) clusters, with a difference significant at the 3.0 sigma level. Our results do not depend on the algorithm used to select the cluster sample, suggesting that they are not biased by systematics of either algorithm. The correlation between BCG dominance and cluster alignment may be a consequence of the hierarchical merging process which forms the cluster. The observed redshift evolution may follow from secondary infall at late redshifts.Comment: 15 pages, 12 Figures, 10 Tables, Accepted for publication in MNRA
    • …
    corecore