34 research outputs found
Efficient sorting of free electron orbital angular momentum
We propose a method for sorting electrons by orbital angular momentum (OAM). Several methods now exist to prepare electron wavefunctions in OAM states, but no technique has been developed for efficient, parallel measurement of pure and mixed electron OAM states. The proposed technique draws inspiration from the recent demonstration of the sorting of OAM through modal transformation. We show that the same transformation can be performed on electrons with electrostatic optical elements. Specifically, we show that a charged needle and an array of electrodes perform the transformation and phase correction necessary to sort OAM states. This device may enable the analysis of the spatial mode distribution of inelastically scattered electrons
Probing Light Atoms at Sub-nanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography
Atomic resolution imaging in transmission electron microscopy (TEM) and
scanning TEM (STEM) of light elements in electron-transparent materials has
long been a challenge. Biomolecular materials, for example, are rapidly altered
when illuminated with electrons. These issues have driven the development of
TEM and STEM techniques that enable the structural analysis of electron
beam-sensitive and weakly scattering nano-materials. Here, we demonstrate such
a technique, STEM holography, capable of absolute phase and amplitude object
wave measurement with respect to a vacuum reference wave. We use an
amplitude-dividing nanofabricated grating to prepare multiple spatially
separated electron diffraction probe beams focused at the sample plane, such
that one beam transmits through the specimen while the others pass through
vacuum. We raster-scan the diffracted probes over the region of interest. We
configure the post specimen imaging system of the microscope to diffraction
mode, overlapping the probes to form an interference pattern at the detector.
Using a fast-readout, direct electron detector, we record and analyze the
interference fringes at each position in a 2D raster scan to reconstruct the
complex transfer function of the specimen, t(x). We apply this technique to
image a standard target specimen consisting of gold nanoparticles on a thin
amorphous carbon substrate, and demonstrate 2.4 angstrom resolution phase
images. We find that STEM holography offers higher phase-contrast of the
amorphous material while maintaining Au atomic lattice resolution when compared
with high angle annular dark field STEM.Comment: 9 pages, 5 figures in main text, 1 supplemental figure in the
appendi
An electron Talbot interferometer
The Talbot effect, in which a wave imprinted with transverse periodicity
reconstructs itself at regular intervals, is a diffraction phenomenon that
occurs in many physical systems. Here we present the first observation of the
Talbot effect for electron de Broglie waves behind a nanofabricated
transmission grating. This was thought to be difficult because of Coulomb
interactions between electrons and nanostructure gratings, yet we were able to
map out the entire near-field interference pattern, the "Talbot carpet", behind
a grating. We did this using a Talbot interferometer, in which Talbot
interference fringes from one grating are moire'-filtered by a 2nd grating.
This arrangement has served for optical, X-ray, and atom interferometry, but
never before for electrons. Talbot interferometers are particularly sensitive
to distortions of the incident wavefronts, and to illustrate this we used our
Talbot interferometer to measure the wavefront curvature of a weakly focused
electron beam. Here we report how this wavefront curvature demagnified the
Talbot revivals, and we discuss applications for electron Talbot
interferometers.Comment: 5 pages, 5 figures, updated version with abstrac
Interpretable and efficient contrast in scanning transmission electron microscopy with a diffraction grating beamsplitter
Efficient imaging of biomolecules, 2D materials and electromagnetic fields
depends on retrieval of the phase of transmitted electrons. We demonstrate a
method to measure phase in a scanning transmission electron microscope using a
nanofabricated diffraction grating to produce multiple probe beams. The
measured phase is more interpretable than phase-contrast scanning transmission
electron microscopy techniques without an off-axis reference wave, and the
resolution could surpass that of off-axis electron holography. We apply the
technique to image nanoparticles, carbon sub- strates and electric fields. The
contrast observed in experiments agrees well with contrast predicted in
simulations
Roadmap on structured light
Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized