research

An electron Talbot interferometer

Abstract

The Talbot effect, in which a wave imprinted with transverse periodicity reconstructs itself at regular intervals, is a diffraction phenomenon that occurs in many physical systems. Here we present the first observation of the Talbot effect for electron de Broglie waves behind a nanofabricated transmission grating. This was thought to be difficult because of Coulomb interactions between electrons and nanostructure gratings, yet we were able to map out the entire near-field interference pattern, the "Talbot carpet", behind a grating. We did this using a Talbot interferometer, in which Talbot interference fringes from one grating are moire'-filtered by a 2nd grating. This arrangement has served for optical, X-ray, and atom interferometry, but never before for electrons. Talbot interferometers are particularly sensitive to distortions of the incident wavefronts, and to illustrate this we used our Talbot interferometer to measure the wavefront curvature of a weakly focused electron beam. Here we report how this wavefront curvature demagnified the Talbot revivals, and we discuss applications for electron Talbot interferometers.Comment: 5 pages, 5 figures, updated version with abstrac

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019