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Abstract
Wepropose amethod for sorting electrons by orbital angularmomentum (OAM). Severalmethods
now exist to prepare electronwavefunctions inOAMstates, but no technique has been developed for
efficient, parallelmeasurement of pure andmixed electronOAMstates. The proposed technique
draws inspiration from the recent demonstration of the sorting ofOAM throughmodal transforma-
tion.We show that the same transformation can be performed on electronswith electrostatic optical
elements. Specifically, we show that a charged needle and an array of electrodes perform the
transformation and phase correction necessary to sortOAMstates. This devicemay enable the analysis
of the spatialmode distribution of inelastically scattered electrons.

1. Introduction

Electrons scattered by an interactionwithmatter, such as from individual atoms,molecules, ormaterials,
acquire a spectrumof energies, linearmomenta, and spin polarizations. Information about the event is encoded
in these various degrees of freedomby the electron’s wavefunction. Recently, several groups demonstrated
control of the orbital angularmomentum (OAM) of freedomof free electrons [1–3].Myriad techniques for
generating electronOAMstates now exist, includingmaterial andmagnetic spiral phase plates [1, 4–6], phase
[7–9] and amplitude [2, 10] diffraction gratings, andmode conversion [11]. Exchange ofOAMbetween a target
specimen and a fast electron could provide information about the structural chirality [12, 13] and out-of-plane
magnetization of the target [14–16]. In these applications, the electrons can scatter tomany differentfinalOAM
states, andmeasurement of the finalOAMdistribution can provide new information about the scattering
targets. However, there are currently nomeasurement techniques that can efficiently and quantitativelymeasure
theOAMdistribution of free electrons.

In 2010, Berkhout et al [17] demonstrated a newmethod to efficiently sort OAMstates of light using four
refractive optical elements. The apparatus transforms an azimuthal phase at the input into a linear phase at the
output, such thatOAMcomponents at the input aremapped into separate linearmomentum states at the
output. This ability tomeasure superpositions andmixed states of optical OAMenables parallel OAM
measurement. The apparatus has been rapidly employed for a range of optical applications in both fundamental
research [18, 19], quantum information [20], and communications [21, 22]. As shown infigure 1(a), the
apparatus is based on two custom-made non-spherical refractive optical components, the phase unwrapperU
and the phase corrector C, with two lenses L1 and L2 used to the Fourier transform the output of each.

Thefirst optical element (Uand L1 infigure 1) is a log-polar transformer [23] that transforms a set of
concentric rings at the input plane into a set of parallel lines at the back focal plane of the lens—or, equivalently,
OAMstates into planar waves. The phase profile of this unwrapper element is described by equation (1) in [17]:
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whereDt is a lengthscale that sets the separation distance betweenOAMstates in the output plane, and b is a
lengthscale that determines the position of the unwrapped beam in the corrector plane. A plot of the phase
distribution for this lens is shown infigure 2(a).

2. Electrostatic OAMunwrapper for electrons

To imprint the phase profile described in equation (1) onto an electronwavefunction, one could use either
refractive or diffractive wavefront-shaping techniques. In light optics, there are establishedmethods for

Figure 1. Schematic of the optical arrangement ofOAM-sorting devices for (a) light and (b) electrons. DifferentOAMstates are shown
in different colors.MixedOAMstates are incident on the top of both systems, each ofwhich consists of four elements. A phase
unwrapper elementU in the front focal plane of a lens L1 is followed by a phase corrector element C in the back focal place of L1. For
electrons, the proposed elementU is a charged needle or knife edge, and the corrector element C is an array of electrodes with
alternating bias. Immediately after the corrector element C, different OAMcomponents are separated inmomentum space. At the
bottomof each device, a Fourier-transforming lens L2 separatesOAMcomponents into different spots in real space at the output.

Figure 2.Phase profiles of the (a) unwrapper elementU described in equations (1) and (b) the corrector element C described in
equation (4). In (a), the lowest phase (white) occurs at the position of the needle. Both plots use parameters expressed in table 1.
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fabricating customphase plates out of transparentmaterial such as glass. However, while thinfilmphase plates
for electrons are possible [6], they contaminate easily and are difficult to fabricate. Finally, nomaterial is
sufficiently electron-transparent to imprint the large phases required for sortingOAM.Arbitrary electron phase
profiles can be imprinted holographically using nanofabricated diffractive optics [7, 8]. However, the smaller but
still significant inelastic scattering in thematerial, the small diffraction angles, lowdiffraction efficiency, and
finite size of the diffractive structuresmake the use of such holograms for anOAMmode sorter impractical.

Instead, a relatively simple electrostatic phase plate consisting of a charged needle and a conductive plate can
be used to imprint a phase equivalent to equation (1) onto a charged particle wave. The phase that the tip of a
charged needle imparts to an electron has been studied previously by several different groups [24–26].Matteucci
et al [24] calculated this analytically by first considering the electrostatic potential ( )V r around an infinitesimally
thinwire offinite length and uniform charge density placed a distance h away fromaflat conducting plate. The
spatially varying phase shift a potential ( )V r imparts to an electron planewave of energyE and relativistically
correctedwavelengthλ traveling in the+z direction can be calculated by the integral

( ) ( ) ( )òj =
-¥

¥
C V zr r d , 2E

whereCE is a constant that depends only on the energy of the beam [27] (CE=6.53 mrad V−1 nm−1 for 300 keV
electrons).

In appendix A, we adaptMatteucci et alʼs result (equation (4) in [24]) for the purpose of imprinting
equation (1).We show that if the electron beam is localized around the needle tip nearest the plate electrode, and
the length of the needle and its separation from the plate are sufficiently large, this arrangement imprints the
appropriate unwrapping phase for sorting electronOAM:
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where L is the length of the needle,E is the kinetic energy of the electron beam, andj0 is a uniformphase
common to all paths, which is unobservable at the detector.With the exception of amissing linear phase, we see
that equation (3) exactlymatches equation (1) if b=L and = p

D
Q

L C t

4

E

0 . This discrepancy is unimportant, as a

linear phase in the unwrapper plane corresponds to a position offset in the corrector plane that can be easily
provided by position alignment optics (based on static in-planemagnetic or electric fields) found in the
transmission electronmicroscope.

There are several possiblemethods for practical realization of such an electrostatic element in an electron
microscope, as discussed further in appendix B. A thin insulatingwire could provide the constant line charge
density assumed for the derivation of equation (1), although in an actual device the charge density could be
affected by the incident beam current and could fluctuate in time.On the other hand, a conductingwire
fabricated such that its physical surface coincides with the equipotential surface of a constant line chargemay be
more easily tunable andmore robust against changes in the incident beam current. In appendix B, we use
simulations to demonstrate that such needles can impart the appropriate unwrapper phasemodulationwith
excellentfidelity, andwefind that this is insensitive to electrostatic boundary conditions. The inner conductive
surfaces of an electronmicroscope are typically grounded and are hundreds ofmicrons tomillimeters away from
the electron beam, and in such limits these surfaces will have little effect on the phase imparted by the needle.

When using the proposed device tomeasureOAMdistributions of electrons scattered from a specimen in a
TEM, it is important to realize that these orbital states will originate fromdifferent locations in the sample. For
example, electron orbital states could be generated by scattering from each atom in amaterial, and so the
electron vortices will have different centers each offset fromone another. This results in a complicated
distribution in the near field of the specimen. To ensure all of these offset orbital states are alignedwith the input
of the proposedOAMsorter, the input of the sorter should be positioned in the far-field of the specimenwhere
the orbitalmode distributionwill be spatially coherent and all electron vortices will be concentric. For actual
experiments, the needle-based phase unwrapper should therefore be placed in the back focal plane of the sample.
Amodified aperture holder provides a convenient way to install, position, and electrically bias the needle-based
corrector. Such holders have already been developed for a variety of TEMs in order to control charged
Möllendstedt biprismwires for use in electron holography.

We also note that an extended knife edge electrode could potentially be used instead of a charged needle. The
2D electrostatic potential of a semi-infinite plane of chargewith it’s edge along the z-axis has the same functional
form as the desired unwrapper phase ( )j x y,U (see Chapter 7 in [28]). Thus, an appropriately shaped knife-edge
electrode aligned along the optical axis could provide an alternative design to the needle, if the lengthwere long
enough such that phase introduced near the beginning and end of the electrode were negligible. Such a design,
however,might undesirably affect the amplitude of the incident electronwave.
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3. Electrostatic phase corrector for electrons

The phase unwrapper element is followed by a conventional electron lens system (L1). Simulations of the
electronwave function in the back focal plane of this intermediate lens show that there are large variations in the
phase due to the unwrapping operation. These phase variationsmust be removed by a second optical element to
reveal the subtlerOAM-dependent differences. This phase corrector (labeled ‘C’ infigure 1) is described by the
following phase profile:

( ) ( )j
p p
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where, following the notation of Berkhout et al [17], we use (u, v) to describe the transverse coordinates of the
transformed field in the corrector plane from the transverse coordinates of the input field. This corrector phase,
shown infigure 2(b), is identical to the phase derived by Berkhout et al [17], using some re-labeled variables. To
accurately correct the phase in this plane, the amplitude of this phasemodulationmust be proportional to

D
b

t
,

and the lengthscale = l
D

d
f

t
, where f is the focal length of lens L1 between the unwrapper and corrector planes.

Electrostatic elements can also be employed to imprint this corrector phase. As the phase distribution is a
solution to Laplace’s equation in 2D, i.e. ( )j =u v, 02

C , we see that an electrostatic potential in 2D can take
this form.We can approximate the 2Dpotential solution in 3Dwith a potential that varies slowly in z.
Specifically, we can apply ( )j u v,C to an electronwith a set of alternating electrodes, as shown infigure 3(b). As
long as the longitudinal heightD of the electrodes ismuch longer than the period d (see appendix C), and the
thin grating condition, lD d2 is satisfied, the variation of the potential in the longitudinal direction is
negligible over the depth. The corrector phase can bewritten as
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2

1 0

1 . Further

analysis (see appendix C) shows that it could be practical to remove the reference electrodes at =u u1 if the
nearest grounded surface is sufficiently far away (at some distancemuch larger than d).

As shown infigures 4(b), and (e), immediately after the corrector the phase of the electron beam is flattened,
such that an input state withOAMquantumnumberm is transformed here into a bar-shaped distributionwith a
phase that linearly varies in the v-direction from0 to pm2 over thewidth of the beamprofile. The slope of this
corrected phase ramp is inversely proportional to thewidth of the beamprofile in the v-direction, equal toDt .
Thus, after the Fourier-transforming lens L2, the initial orbitalmodes are focused at the output plane into
separate lines (figure 4)with afinal spacing of

Figure 3. (a)Top-view cartoon of charged needle and ground plate used to produce the unwrapper phase. Electrons passing into the
device near the right end of the needlewill acquire the phase described by equation (3). (b)Top-view cartoon of example electrodes
that could be used to produce the corrector phase, (4). Alternating very high (VC0) and very low (-VC0) voltages at the boundary at
u=0 produce a sinusoidal potential in the v-direction. Alternatingweakly high (VC1) andweakly low (-VC1) voltages at the boundary
at =u u1 produce an exponential decay in the u-direction. The electrodes at =u u1 are not physically necessary, as we show in figure
C2b.
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( )l
D =t

f

d
. 6

4.Design parameters and simulated outputs

Lavery et al separatedOAMstates of light with awavelength of l = 632.8 nm, lens focal length =f 300 mm, a
corrector period =d 8 mm and therefore an unmagnified separation of mD =t 23.73 m [18]. As preparation
of a collimated photonOAMstate with awaist on the order of m10 m is straightforward, this separation is
sufficient.

The orders ofmagnitude of these parameters are wildly different for electrons, but good separation is
similarly straightforward. One set of possible parameter values to achieve this is listed in table 1.With a needle
length of m~L 50 m, an incident beamwaist on the order of m1 m is physically reasonable. Separation on the
order of mD =t 0.2 m can be achieved in a transmission electronmicroscope at 300 kV with l ~ 1.97 pm and
a corrector period of m~d 10 m if the focal length of the lens between the needle and corrector, L1, is
~f 100 cm. Several lenses with focal lengths in the 1 cm to10 cm range can be combined tomore practically

produce a 1meter focal length over amuch shorter distance.
To review, the parameters of this arrangement are: (a) the chargeQ added to the needle-based unwrapper

phase plate, (b) the length of the needle L, (c) the voltageVC0
applied to the corrector electrodes, (d) the spatial

periodicity d of the corrector electrodes, and (e) the focal length of the lenses f.We have offered one possible
combination of parameters here, but thismay of course be tuned according to the application.

Figures 4–6 show the action of a sorter with these parameters on various input states. Note that, just as with
an optical OAM sorter, the electron device sortsmultiple inputOAMstates identically regardless of whether they
are in coherent superpositions (figures 5(c) and (g)) or incoherentmixtures (figures 5(d) and (h)). As shown in
the simulation infigure 6, the electronOAMsorter could also be used for orbitalmode decomposition of
arbitrary wavefunctions, which could be used to reveal hidden chiral asymmetries in electron-scattering targets.

Figure 4. Illustration of the action of the device. The unwrapperU and intermediate lens L1 produces a beam in the corrector plane
that haswidth d in the v-direction and that has rapid phase variations (a) and (d). The corrector C removes the rapid phase variations
to produce planewave-like beams in the corrector planes (b)and (e)which correspond to deflected spots in the output planes (c) and
(f). These simulations assume ideal unwrapper and corrector phases (equations (3) and (5))with parameters shown in table 1.
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Table 1.

Sorter parameter Magnitude

λ 1.97 pm

f 1 m

d 10 μm

b=L 50 μm

VC0 D 39 V μm

Q/L 8.5 pC m–1

VU 0.63 V

Figure 5.The simulated (a)–(d) input and (e)–(h) output of the proposed electronOAMsorter using parameters shown in table 1.
Note that the outputs (e)-(h) are zoomed-in for clarity.Input states are Laguerre–Gaussianmodes with a m5 m beamwaist and (a)
superposed = +m 3 and = -m 3, (b) superposed = +m 5 and = -m 2, (c) superposedm=3 andm=0, and (d)mixed

= +m 3 andm=0. Each electronOAMcomponent at the input getsmapped onto a separate region in space at the output, which is
viewed directly using TEM imaging optics. In this way, a spectrumof electronOAM states can be efficiently recorded in parallel.

Figure 6. (a) Initial randomwavefunctionwith non-trivial orbital angularmomentumdistribution; amplitude is shown as brightness
and phase is shown as hue; (b) calculated orbital angular angularmomentumdistribution; (c) probability density of the random
wavefunction passed through the sorter; (d) orbital angularmomentumdistribution calculated by binning the output of the sorter.
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5. Crosstalk

An important figure ofmerit for ameasurement device is the crosstalk: the rate of erroneous counts that occur
when adjacentmeasurement outcomes are counted as the outcome of interest. In the proposed electronOAM
sorter, therewill be some crosstalk that arises from the diffraction limit. Input electron orbitalmodes separated
by a singleOAMquanta (D =m 1) become planewaves just after the corrector element that are just slightly
tilted fromone another, with phase ramps that only differ by p2 across thewidth of the states. Thus, when
focused onto an imaging detector by lens L2, these two states are only just resolvable. Figure 7 shows the crosstalk
of an ideal electronOAMsorter, simulatedwith phases shown in equations (3) and (5) and parameters shown in
table 1. In a real device, aberrations andmisalignment of the electron beamare likely to further increase this
minimumamount of crosstalk.

6. Conclusion

Knowledge of interactions inwhich a free electron exchangesOAMwith a specimen can lead to insights into the
properties of the object. However,many attempts by several groups to observeOAM transfer between a
prepared focused electronwithOAMand an atomhave so far been unsuccessful, due to the fact that electrons
are scattered into a superposition of orbital states. Herewe described an electron-optical analog of theOAM
sorter developed for photons. This device can non-destructively disperse the spectrumof electronOAM,
providing away tomeasure theOAMdistribution of electrons scattered or ejected fromatoms,molecules, and
larger collections ofmatter. Thus, this could provide a completely new formof spectroscopy that can be used to
probe the asymmetric structure ofmatter, atomic andmolecular polarizations, and chiral interactions.
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AppendixA. Calculation of phase past charged needle

Herewe consider electrons propagating in the zdirection past an infinitesimally thin needle of constant charge
density s = Q L, where L is the length of the needle.We consider that the needle lies on the x-axis with one tip
at the origin and the other located at = -x L. The charged needle is oriented perpendicularly to a conducting
plate that lies parallel to the y–z plane at x=h. The electrostatic potential of this arrangement can bewritten as

Figure 7.Crosstalk of the electron orbital angularmomentummeasurement with parameters shown in table 1. A perfect sorter would
have outcome probabilities of exactly 1 for every ℓ ℓ=measured input and 0 elsewhere. Aswith an optical OAMmode sorter, the crosstalk
of this device is due to diffraction limit.
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bemuch larger than the region of interest, i.e.  +h x y2 2 , we see some simplification. The third and fourth
terms cancel, the sixth term goes to zero, and the last two terms go to a constant phase shift that depends only on
L and h. Depending on the relativemagnitudes of h and L, it is also possible to extract a linear phase in x from the
latter three terms
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wherej0 is a constant ‘background’ phase that does not affect the sortermechanism.
If we rewrite the inverse trigonometric functions, we see that the extra ∣ ∣py

2
terms cancel andwe have
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If we now take the length of the needle as large compared to the region of interest, i.e.  +L x y2 2 , we see
further simplification of the result. As ( ) =-cos 1 01 , we are left with two termsWith this approximation, the
phase distribution induced onto an electronwave passing close to the tip of the needle is:
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whichwe canfinally rewrite, using the fact that
∣ ∣=-

+
-cos tanx
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, as
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Equation (A.6) is exactly the desired phase of the unwrapper element (equation (1))minus a linear phase. The
missing linear phase corresponds to a position shift in the output plane that can be easily correctedwith readily
availablemagnetostatic or electrostatic position alignment optics.
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Appendix B. Fidelity of the phase of proposed unwrapper element

It is well established that a thin, biased conducting needle does notmaintain a constant line charge density
[29, 30]. Experiments have shown that a thin, insulating needle aquires a negative charge under the incident
electron beam [31], and it is possible that the charge density on such an insulating needle is nearly constant.
However, it seems that the value of the charge density, and therefore the parameters of the sorter,might depend
more strongly on the incident beam current than is desirable for a robust, tunable device.

Amore controllable approach involves the use of a biased conductor with a physical surface fabricated to
match the equipotential surfaces of a constant line charge density [29]. In particular, to produce a potential that
corresponds to a line charge densityQ/L and a length of the line charge L, the needle should be held at a voltage
VU with a surface defined by the equipotential

( )
( )

p
=

+ + + + +

+ + +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V

Q

L

x L x L y z

x x y z4
ln B.1U

0

2 2 2

2 2 2

which corresponds to equation (A.1) in the limit that  ¥h .
We simulated the potential produced by the nearly hyperboloid tip described above, with a conducting

surface at the equipotential


=
p

V 8 Q

LU 4 0
. As equation (A.1) is a solution to Laplace’s equation, i.e.

Figure B1. Simulations of the electron phase effects of a shaped conducting needle with physical surfaces defined tomatch
equipotentials of a constant line charge density, with various boundary conditions. The electrostatic potential was calculated around a
needle of length m=L 50 m with various boundary conditions, and the phase imparted to the electronwas calculated after traversing
the region from m= -x 10 m to m= +x 10 m, m= -y 10 m to m= +y 10 m, and m= -z 40 m to m= +z 40 m. The von
Neumann boundary condition · ˆ =V n 0 was used for all boundaries. (a)Phase distribution imprinted by the needle on an electron
wave passing through the simulated region. (b)Deviation of the phase shown in (a) from an ideal unwrapper phase described by
equation (1). Deviation is defined as the difference between the simulated phase and the ideal phase, divided by the difference between
themaximumandminimum ideal phase in the m20 m × m20 m region shown. (c)Deviation of a phase calculated from a simulation
boxwith aflat ground plate (Dirichlet boundary) at m= +x 25 m. (d)Deviation of a phase calculated from a simulation boxwith a
flat ground plate at m= +x 30 m. (e)Deviation of a phase calculated from a simulation boxwith a semi-cylindrical ground plate at a
radius of m+25 m from the end of the needle. (e)Deviation of a phase calculated from a simulation boxwith a semi-cylindrical
ground plate at a radius of m+30 m from the end of the needle.
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( ) =V x y z, , 02 , everywhere except at the position of the needle, we numerically solved Laplace’s equation
with aDirichlet boundary given by equation (B.1).We tried several boundary conditions for the external
boundaries to test the robustness of the potential against variations in the shape and location of the grounded
conductor. The results of these simulations are shown in figure B1. The phases calculatedwith equation (2) from
simulated potentials show excellent agreement with the ideal unwrapper phase, equation (A.6), regardless of
boundary conditions, and especially as the distance h to the conducting plate is increased.When h is smaller (e.g.
figure B1(c)), a noticeable astigmatic -y x2 2 phase is noticeable. This deviation is correctable using standard
quadrupolar stigmators.

AppendixC. Fidelity of the phase of proposed corrector element

As the corrector phase solves Laplace’s equation, it is straightforward to generate this phase with an electrostatic
potential ( )V u v, , following equation (2).We can approximate the two-dimensional solution to Laplace’s
equation ( )V u v, with a nearly z-independent three-dimensional solution. The simplest boundary conditions
are constant over a range in z that wewill call the depth,D. In particular, we can specify the ( )V u v, wewant with
boundaries at u=0 and =u u1. In otherwords

( ) ( ) ∣ ∣ ( )=
⎪

⎪

⎧
⎨
⎩V u v z

V u v z
, ,

, ,

free elsewhere.
C.1i

i
D

2

We investigated these boundaries with a numerical solution to Laplace’s equation. For figures C1 andC2(a),
we set Dirichlet boundary conditions at two positions in u. In the range ∣ ∣ <z D

2
, we set theDirichlet boundary

conditions

( ) ( )p
= = -⎜ ⎟⎛

⎝
⎞
⎠V u v V

v

d
0, cos

2
, C.2C0

( ) ( )p
= = -⎜ ⎟⎛

⎝
⎞
⎠V u u v V

v

d
, cos

2
, C.30 C1

whereVC0
andVC1

are the peak potentials at = =u u 00 and =u u1, respectively, and d is the period in v.We see

that, to satisfy Laplace’s equation, wemust have ( )= - pV V exp u

dC C
2

1 0

1 .We used periodic boundary conditions

in v, and the vonNeumann boundary condition · ˆ =V n 0 for all other boundaries. For figure C2(b), we used

FigureC1. (a)Cross-section of simulated potential in the u–z plane at v=0 showing rapid decay of potential outside the device. (b)
Line plot of a simulated potential at =u d0.3 in the u–z plane showing exponential decay of the potential outside the device. (blue)
Simulated potential ( )= =V u d v z0.3 , 0, , also shown as blue line in (a); (green)model of the potential that is constant inside the

device and exponentially decays as ( )( )µ  p V exp z D

d

2 2 outside the device. This simulation used a period d=1.0, a depthD=2.0

(resulting in boundaries at = z 1.0), arbitary VC0, and boundaries at u=0, u=1.0, v=0, v=1.0, = -z 50.0 and z=50.0 with
a voxel size of 0.01 by -2 5 by 0.01.
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amore physical approximation to the above: we usedDirichlet boundary conditionswith constant potentials
along u=0 only inside square, flat electrodes, and used the vonNeumann boundary condition at =u d0.8 .

We found that, as long as the depthDwasmuch larger than the period d, i.e. the potential is constant in z
over amuch longer length scale than it varies in u and v, the fringing fields were insignificant. Specifically, we

found that the potential decayed exponentially with a decay length
p
d

2
outside the device. The contribution of

this tail to the phase scales with d, while the contribution from inside the device scales withD. The precision of
the phase can therefore be arbitrarily increased by increasingDwhile holding d constant, up to the limit of the
thin grating condition lD d2. As l = 1.97 pm for 300 keV electrons, if m=d 10 m, the devicewould still
act as a thin grating up to ~D 100 m.
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