190 research outputs found
The surgery-first approach for orthognathic correction of maxillary deficiency—is it stable? Three-dimensional assessment of CBCT scans and digital dental models
The aim of this study was to determine the skeletal stability of Le Fort I maxillary advancement following the surgery-first approach, by three-dimensional (3D) assessment of cone beam computed tomography (CBCT) scans and digital dental models. CBCT scans of 25 class III patients obtained 1 week preoperatively (T0) and 1 week (T1) and 6 months (T2) postoperatively were superimposed to measure surgical movements (T0–T1) and skeletal relapse (T1–T2). The distorted dentition of the CBCT scans at T1 was replaced with 3D images of the dental models to assess the postoperative occlusion. Surgical movements of the maxilla (mean ± standard deviation values) were 6.79 ± 2.30 mm advancement, 1.28 ± 1.09 mm vertically, and 0.71 ± 0.79 mm mediolaterally. Horizontal rotation (yaw) was 1.56° ± 1.21°, vertical rotation (pitch) 1.86° ± 1.88°, and tilting (roll) 1.63° ± 1.54°. At T2, the posterior relapse was 0.72 ± 0.43 mm (P = 0.001) and relapse in pitch was 1.56° ± 1.42° (P = 0.007). There was no correlation between the size of the surgical movements and the amount of relapse. A weak correlation was noted between the number of teeth in occlusal contact immediately following surgery and relapse of maxillary roll (r = − 0.434, P = 0.030). The stability of maxillary advancement with the surgery-first approach was satisfactory and was not correlated with the quality of the immediate postoperative occlusion
Efficacy of 3D visualization in mobile apps for patient education regarding orthognathic surgery
‘Sur-face’ is an interactive mobile app illustrating different orthognathic surgeries and their potential complications. This study aimed to evaluate the efficacy of Sur-face by comparing two methods of delivering patient information on orthognathic surgeries and their related potential complications: a mobile app with interactive 3D animations and a voice recording containing verbal instructions only. For each method, the participants’ acquired knowledge was assessed using a custom-designed questionnaire. Participants in the ‘app’ group performed significantly better (P<0.0034) than those in the ‘voice’ group and retained more knowledge, suggesting that interactive visualizations play a key role in improving understanding of the orthognathic surgical procedure and its associated complications. This study emphasizes the impact of 3D visualizations in delivering information regarding orthognathic surgery and highlights the advantage of delivering validated patient information through mobile apps
An international review of the frequency of single-bicycle crashes (SBCs) and their relation to bicycle modal share
Objectives To study cyclists’ share of transport modes (modal share) and single-bicycle crashes (SBCs) in different countries in order to investigate if the proportion of cyclist injuries resulting from SBCs is affected by variation in modal share.
Methods A literature search identified figures (largely from western countries) on SBC casualties who are fatally injured, hospitalised or treated at an emergency department. Correlation and regression analyses were used to investigate how bicycle modal share is related to SBCs.
Results On average, 17% of fatal injuries to cyclists are caused by SBCs. Different countries show a range of values between 5% and 30%. Between 60% and 95% of cyclists admitted to hospitals or treated at emergency departments are victims of SBCs. The proportion of all injured cyclists who are injured in SBCs is unrelated to the share of cycling in the modal split. The share of SBC casualties among the total number of road crash casualties increases proportionally less than the increase in bicycle modal share.
Conclusions While most fatal injuries among cyclists are due to motor vehicle–bicycle crashes, most hospital admissions and emergency department attendances result from SBCs. As found in previous studies of cyclists injured in collisions, this study found that the increase in the number of SBC casualties is proportionally less than the increase in bicycle modal share.publishedVersio
Dynamics of Sleep-Wake Transitions During Sleep
We study the dynamics of the awakening during the night for healthy subjects
and find that the wake and the sleep periods exhibit completely different
behavior: the durations of wake periods are characterized by a scale-free
power-law distribution, while the durations of sleep periods have an
exponential distribution with a characteristic time scale. We find that the
characteristic time scale of sleep periods changes throughout the night. In
contrast, there is no measurable variation in the power-law behavior for the
durations of wake periods. We develop a stochastic model which agrees with the
data and suggests that the difference in the dynamics of sleep and wake states
arises from the constraints on the number of microstates in the sleep-wake
system.Comment: Final form with some small corrections. To be published in
Europhysics Letters, vol. 57, issue no. 5, 1 March 2002, pp. 625-63
Effects of thermoregulation on human sleep patterns: A mathematical model of sleep-wake cycles with REM-NREM subcircuit
In this paper we construct a mathematical model of human sleep/wake regulation with thermoregulation and temperature e ects. Simulations of this model show features previously presented in experimental data such as elongation of duration and number of REM bouts across the night as well as the appearance of awakenings due to deviations in body temperature from thermoneutrality. This model helps to demonstrate the importance of temperature in the sleep cycle. Further modi cations of the model to include more temperature e ects on other aspects of sleep regulation such as sleep and REM latency are discussedPostprint (author's final draft
Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans
Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep schedules for 1 week before the study and consumed a weight-maintenance diet for 3 days prior to and during the laboratory protocol. Following a habituation night, subjects lived in a whole-room indirect calorimeter for 3 days. The first 24 h served as baseline – 16 h wakefulness, 8 h scheduled sleep – and this was followed by 40 h sleep deprivation and 8 h scheduled recovery sleep. Findings show that, compared to baseline, 24 h EE was significantly increased by ∼7% during the first 24 h of sleep deprivation and was significantly decreased by ∼5% during recovery, which included hours awake 25–40 and 8 h recovery sleep. During the night time, EE was significantly increased by ∼32% on the sleep deprivation night and significantly decreased by ∼4% during recovery sleep compared to baseline. Small differences in EE were observed among sleep stages, but wakefulness during the sleep episode was associated with increased energy expenditure. These findings provide support for the hypothesis that sleep conserves energy and that sleep deprivation increases total daily EE in humans
Delayed Onset of a Daytime Nap Facilitates Retention of Declarative Memory
BACKGROUND: Learning followed by a period of sleep, even as little as a nap, promotes memory consolidation. It is now generally recognized that sleep facilitates the stabilization of information acquired prior to sleep. However, the temporal nature of the effect of sleep on retention of declarative memory is yet to be understood. We examined the impact of a delayed nap onset on the recognition of neutral pictorial stimuli with an added spatial component. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an initial study session involving 150 neutral pictures of people, places, and objects. Immediately following the picture presentation, participants were asked to make recognition judgments on a subset of "old", previously seen, pictures versus intermixed "new" pictures. Participants were then divided into one of four groups who either took a 90-minute nap immediately, 2 hours, or 4 hours after learning, or remained awake for the duration of the experiment. 6 hours after initial learning, participants were again tested on the remaining "old" pictures, with "new" pictures intermixed. CONCLUSIONS/SIGNIFICANCE: Interestingly, we found a stabilizing benefit of sleep on the memory trace reflected as a significant negative correlation between the average time elapsed before napping and decline in performance from test to retest (p = .001). We found a significant interaction between the groups and their performance from test to retest (p = .010), with the 4-hour delay group performing significantly better than both those who slept immediately and those who remained awake (p = .044, p = .010, respectively). Analysis of sleep data revealed a significant positive correlation between amount of slow wave sleep (SWS) achieved and length of the delay before sleep onset (p = .048). The findings add to the understanding of memory processing in humans, suggesting that factors such as waking processing and homeostatic increases in need for sleep over time modulate the importance of sleep to consolidation of neutral declarative memories
Mild Transient Hypercapnia as a Novel Fear Conditioning Stimulus Allowing Re-Exposure during Sleep
Introduction:Studies suggest that sleep plays a role in traumatic memories and that treatment of sleep disorders may help alleviate symptoms of posttraumatic stress disorder. Fear-conditioning paradigms in rodents are used to investigate causal mechanisms of fear acquisition and the relationship between sleep and posttraumatic behaviors. We developed a novel conditioning stimulus (CS) that evoked fear and was subsequently used to study re-exposure to the CS during sleep.Methods:Experiment 1 assessed physiological responses to a conditioned stimulus (mild transient hypercapnia, mtHC; 3.0% CO2; n = 17)+footshock for the purpose of establishing a novel CS in male FVB/J mice. Responses to the novel CS were compared to tone+footshock (n = 18) and control groups of tone alone (n = 17) and mild transient hypercapnia alone (n = 10). A second proof of principle experiment re-exposed animals during sleep to mild transient hypercapnia or air (control) to study sleep processes related to the CS.Results:Footshock elicited a response of acute tachycardia (30-40 bpm) and increased plasma epinephrine. When tone predicted footshock it elicited mild hypertension (1-2 mmHg) and a three-fold increase in plasma epinephrine. When mtHC predicted footshock it also induced mild hypertension, but additionally elicited a conditioned bradycardia and a smaller increase in plasma epinephrine. The overall mean 24 hour sleep-wake profile was unaffected immediately after fear conditioning.Discussion:Our study demonstrates the efficacy of mtHC as a conditioning stimulus that is perceptible but innocuous (relative to tone) and applicable during sleep. This novel model will allow future studies to explore sleep-dependent mechanisms underlying maladaptive fear responses, as well as elucidate the moderators of the relationship between fear responses and sleep. © 2013 McDowell et al
- …