251 research outputs found

    Mean squared displacement and sinuosity of three-dimensional random search movements

    Full text link
    Correlated random walks (CRW) have been used for a long time as a null model for animal's random search movement in two dimensions (2D). An increasing number of studies focus on animals' movement in three dimensions (3D), but the key properties of CRW, such as the way the mean squared displacement is related to the path length, are well known only in 1D and 2D. In this paper I derive such properties for 3D CRW, in a consistent way with the expression of these properties in 2D. This should allow 3D CRW to act as a null model when analyzing actual 3D movements similarly to what is done in 2DComment: 7 pages for main text, 2 pages for appendix, 1 figur

    Spatial memory shapes density dependence in population dynamics

    Get PDF
    Most population dynamics studies assume that individuals use space uniformly, and thus mix well spatially. In numerous species, however, individuals do not move randomly, but use spatial memory to visit renewable resource patches repeatedly. To understand the extent to which memorybased foraging movement may affect density-dependent population dynamics through its impact on competition, we developed a spatially explicit, individual-based movement model where reproduction and death are functions of foraging efficiency. We compared the dynamics of populations of with- and without-memory individuals. We showed that memory-based movement leads to a higher population size at equilibrium, to a higher depletion of the environment, to a marked discrepancy between the global (i.e. measured at the population level) and local (i.e. measured at the individual level) intensities of competition, and to a nonlinear density dependence. These results call for a deeper investigation of the impact of individual movement strategies and cognitive abilities on population dynamics

    The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation

    Get PDF
    Background: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (.2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues

    Foraging efficiency in temporally predictable environments: is a long-term temporal memory really advantageous?

    Get PDF
    Cognitive abilities enabling animals that feed on ephemeral but yearly renewable resources to infer when resources are available may have been favoured by natural selection, but the magnitude of the benefits brought by these abilities remains poorly known. Using computer simulations, we compared the efficiencies of three main types of foragers with different abilities to process temporal information, in spatially and/or temporally homogeneous or heterogeneous environments. One was endowed with a sampling memory, which stores recent experience about the availability of the different food types. The other two were endowed with a chronological or associative memory, which stores long-term temporal information about absolute times of these availabilities or delays between them, respectively. To determine the range of possible efficiencies, we also simulated a forager without temporal cognition but which simply targeted the closest and possibly empty food sources, and a perfectly prescient forager, able to know at any time which food source was effectively providing food. The sampling, associative and chronological foragers were far more efficient than the forager without temporal cognition in temporally predictable environments, and interestingly, their efficiencies increased with the level of temporal heterogeneity. The use of a long-term temporal memory results in a foraging efficiency up to 1.16 times better (chronological memory) or 1.14 times worse (associative memory) than the use of a simple sampling memory. Our results thus show that, for everyday foraging, a long-term temporal memory did not provide a clear benefit over a simple short-term memory that keeps track of the current resource availability. Long-term temporal memories may therefore have emerged in contexts where short-term temporal cognition is useless, i.e. when the anticipation of future environmental changes is strongly needed

    Contact-controlled amoeboid motility induces dynamic cell trapping in 3D-microstructured surfaces.

    Get PDF
    On flat substrates, several cell types exhibit amoeboid migration, which is characterized by restless stochastic successions of pseudopod protrusions. The orientation and frequency of new membrane protrusions characterize efficient search modes, which can respond to external chemical stimuli as observed during chemotaxis in amoebae. To quantify the influence of mechanical stimuli induced by surface topography on the migration modes of the amoeboid model organism Dictyostelium discoideum, we apply high resolution motion analysis in microfabricated pillar arrays of defined density and geometry. Cell motion is analyzed by a two-state motility-model, distinguishing directed cellular runs from phases of isotropic migration that are characterized by randomly oriented cellular protrusions. Cells lacking myosin II or cells deprived of microtubules show significantly different behavior concerning migration velocities and migrational angle distribution, without pronounced attraction to pillars. We conclude that microtubules enhance cellular ability to react with external 3D structures. Our experiments on wild-type cells show that the switching from randomly formed pseudopods to a stabilized leading pseudopod is triggered by contact with surface structures. These alternating processes guide cells according to the available surface in their 3D environment, which we observed dynamically and in steady-state situations. As a consequence, cells perform "home-runs" in low-density pillar arrays, crawling from pillar to pillar, with a characteristic dwell time of 75 s. At the boundary between a flat surface and a 3D structured substrate, cells preferentially localize in contact with micropillars, due to the additionally available surface in the microstructured arrays. Such responses of cell motility to microstructures might open new possibilities for cell sorting in surface structured arrays

    Local Orientation and the Evolution of Foraging: Changes in Decision Making Can Eliminate Evolutionary Trade-offs

    Get PDF
    Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape

    Treatment challenges in and outside a network setting: Head and neck cancers

    Get PDF
    Head and neck cancer (HNC) is a rare disease that can affect different sites and is characterized by variable incidence and 5-year survival rates across Europe. Multiple factors need to be considered when choosing the most appropriate treatment for HNC patients, such as age, comorbidities, social issues, and especially whether to prefer surgery or radiation-based protocols. Given the complexity of this scenario, the creation of a highly specialized multidisciplinary team is recommended to guarantee the best oncological outcome and prevent or adequately treat any adverse effect. Data from literature suggest that the multidisciplinary team-based approach is beneficial for HNC patients and lead to improved survival rates. This result is likely due to improved diagnostic and staging accuracy, a more efficacious therapeutic approach and enhanced communication across disciplines. Despite the benefit of MTD, it must be noted that this approach requires considerable time, effort and financial resources and is usually more frequent in highly organized and high-volume centers. Literature data on clinical research suggest that patients treated in high-accrual centers report better treatment outcomes compared to patients treated in low-volume centers, where a lower radiotherapy-compliance and worst overall survival have been reported. There is general agreement that treatment of rare cancers such as HNC should be concentrated in high volume, specialized and multidisciplinary centers. In order to achieve this goal, the creation of international collaboration network is fundamental. The European Reference Networks for example aim to create an international virtual advisory board, whose objectives are the exchange of expertise, training, clinical collaboration and the reduction of disparities and enhancement of rationalize migration across Europe. The purpose of our work is to review all aspects and challenges in and outside this network setting planned for the management of HNC patients
    • 

    corecore