167 research outputs found

    The Effect of Statins on the Functionality of CD4+CD25+FOXP3+ Regulatory T-cells in Acute Coronary Syndrome: A Systematic Review and Meta-analysis of Randomised Controlled Trials in Asian Populations

    Get PDF
    Acute coronary syndrome (ACS) is characterised by increased effector cells and decreased regulatory T-cells (Tregs). Statins have been shown to be clinically beneficial in ACS patients. This effect could be mediated via the induction of Tregs in ACS patients. The aim of this systemic review and meta-analysis was to evaluate whether statin therapy enhances the frequency of Tregs determined by CD4+CD25+FOXP3+ in this subset of patients. A comprehensive search of PubMed and Embase was performed. Studies were restricted to randomised controlled trials that quantified CD4+CD25+FOXP3+ cell frequency by flow cytometric analysis before and after statin treatment in adults diagnosed with ACS. A minimum of at least two of the conventional markers to identify Tregs was compulsory. Four randomised controlled trials studies (439 participants) were included, all with low-to-moderate risk of bias. Pooled data showed a significant increase in Treg frequency after statin therapy in ACS patients. A further meta-regression and subgroup analysis also showed a negative dose-related effect, and a statin type-related effect (rosuvastatin versus atorvastatin), respectively. The results confirmed that statins positively alter the frequency of Tregs, which may indicate a potential mechanism of their therapeutic effect. However, there was a risk of information bias due to the markers used to identify Tregs, which was not fully explored, therefore, further randomised controlled trials should utilise markers of Tregs, such as the FOXP3 locus (Treg-specific demethylated region), for identification

    Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs.

    Get PDF
    Ronin (THAP11), a DNA-binding protein that evolved from a primordial DNA transposon by molecular domestication, recognizes a hyperconserved promoter sequence to control developmentally and metabolically essential genes in pluripotent stem cells. However, it remains unclear whether Ronin or related THAP proteins perform similar functions in development. Here, we present evidence that Ronin functions within the nascent heart as it arises from the mesoderm and forms a four-chambered organ. We show that Ronin is vital for cardiogenesis during midgestation by controlling a set of critical genes. The activity of Ronin coincided with the recruitment of its cofactor, Hcf-1, and the elevation of H3K4me3 levels at specific target genes, suggesting the involvement of an epigenetic mechanism. On the strength of these findings, we propose that Ronin activity during cardiogenesis offers a template to understand how important gene programs are sustained across different cell types within a developing organ such as the heart

    Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress

    Get PDF
    BACKGROUND: In our previous studies, we found that the sites in prokaryotic genomes which are most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo are statistically highly significantly associated with intergenic regions that are known or inferred to contain promoters. In this report we investigate how this structural property, either alone or together with other structural and sequence attributes, may be used to search prokaryotic genomes for promoters. RESULTS: We show that the propensity for stress-induced DNA duplex destabilization (SIDD) is closely associated with specific promoter regions. The extent of destabilization in promoter-containing regions is found to be bimodally distributed. When compared with DNA curvature, deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD properties alone perform better at detecting promoter regions than other programs trained on this genome. Because this approach has a very low false positive rate, it can be used to predict with high confidence the subset of promoters that are strongly destabilized. When SIDD properties are combined with -10 motif scores in a linear classification function, they predict promoter regions with better than 80% accuracy. When these methods were tested with promoter and non-promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial genomes. CONCLUSION: In this report we show that the propensity to undergo stress-induced duplex destabilization (SIDD) is a distinctive structural attribute of many prokaryotic promoter sequences. We have developed methods to identify promoter sequences in prokaryotic genomes that use SIDD either as a sole predictor or in combination with other DNA structural and sequence properties. Although these methods cannot predict all the promoter-containing regions in a genome, they do find large sets of potential regions that have high probabilities of being true positives. This approach could be especially valuable for annotating those genomes about which there is limited experimental data

    Experimental study exploring the interaction of structural and leakage dynamics

    Get PDF
    Strategies for managing leakage from water distribution systems require the ability to effectively evaluate such real losses through the understanding of the behavior of individual leaks, including their response to changes in pressure regime due to demand or management strategies. This paper presents the results from an innovative experimental investigation aimed at understanding the response of longitudinal slits in pressurized viscoelastic pipes, specifically considering the interaction between the structural and leakage dynamics. For the first time, leakage flow rate, pressure, leak area, and material strain were recorded simultaneously, providing new knowledge of the complex interaction of these factors. The paper shows that strain and area are directly related, hence it is possible to employ strain as a predictor of leak area, calculated using a calibrated viscoelastic model. Using such an approach, the leakage flow rates under a range of quasi-static pressures were accurately predicted and validated. Overall the paper demonstrates that the orifice equation, with a constant coefficient of discharge, is suitable for accurately estimating dynamic leakage flow rates from longitudinal slits, provided that the leak area is suitably incorporated

    Stability of mRNA/DNA and DNA/DNA Duplexes Affects mRNA Transcription

    Get PDF
    Nucleic acids, due to their structural and chemical properties, can form double-stranded secondary structures that assist the transfer of genetic information and can modulate gene expression. However, the nucleotide sequence alone is insufficient in explaining phenomena like intron-exon recognition during RNA processing. This raises the question whether nucleic acids are endowed with other attributes that can contribute to their biological functions. In this work, we present a calculation of thermodynamic stability of DNA/DNA and mRNA/DNA duplexes across the genomes of four species in the genus Saccharomyces by nearest-neighbor method. The results show that coding regions are more thermodynamically stable than introns, 3′-untranslated regions and intergenic sequences. Furthermore, open reading frames have more stable sense mRNA/DNA duplexes than the potential antisense duplexes, a property that can aid gene discovery. The lower stability of the DNA/DNA and mRNA/DNA duplexes of 3′-untranslated regions and the higher stability of genes correlates with increased mRNA level. These results suggest that the thermodynamic stability of DNA/DNA and mRNA/DNA duplexes affects mRNA transcription

    Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells

    Get PDF
    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed

    GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis

    Get PDF
    Dysregulated hematopoiesis occurs in several chronic inflammatory diseases, but it remains unclear how hematopoietic stem cells (HSCs) in the bone marrow (BM) sense peripheral inflammation and contribute to tissue damage in arthritis. Here, we show the HSC gene expression program is biased toward myelopoiesis and differentiation skewed toward granulocyte-monocyte progenitors (GMP) during joint and intestinal inflammation in experimental spondyloarthritis (SpA). GM-CSF-receptor is increased on HSCs and multipotent progenitors, favoring a striking increase in myelopoiesis at the earliest hematopoietic stages. GMP accumulate in the BM in SpA and, unexpectedly, at extramedullary sites: in the inflamed joints and spleen. Furthermore, we show that GM-CSF promotes extramedullary myelopoiesis, tissue-toxic neutrophil accumulation in target organs, and GM-CSF prophylactic or therapeutic blockade substantially decreases SpA severity. Surprisingly, besides CD4+ T cells and innate lymphoid cells, mast cells are a source of GM-CSF in this model, and its pathogenic production is promoted by the alarmin IL-33

    Distinct in vitro T-helper Th17 differentiation capacity of peripheral naive T cells in rheumatoid and psoriatic arthritis

    Get PDF
    BACKGROUND: The T-helper 17 (Th17) cells have a prominent role in inflammation as well as in bone and join destruction in both rheumatoid and psoriatic arthritis (RA and PsA). Here, we studied Th17 cell differentiation in RA and PsA. METHODS: Blood samples from healthy donors, RA and PsA patients were collected. CD45RO- (naive) and CD45RO+ (memory) T cells were isolated from peripherial blood mononuclear cell by magnetic separation. Naive T cells were stimulated with anti-CD3, anti-CD28, and goat anti-mouse IgG antibodies and treated with transforming grow factor beta, interleukin (IL)-6, IL-1β, and IL-23 cytokines and also with anti-IL-4 antibody. IL-17A and IL-22 production were measured by enzyme linked immunosorbent assay, RORC, and T-box 21 (TBX21) expression were analyzed by quantitative polymerase chain reaction and flow cytometry. C-C chemokine receptor 6 (CCR6), CCR4, and C-X-C motif chemokine receptor 3 expression were determined by flow cytometry. Cell viability was monitored by impedance-based cell analyzer (CASY-TT). RESULTS: RORC, TBX21, CCR6, and CCR4 expression of memory T cells of healthy individuals (but not RA or PsA patients) were increased (p < 0.01; p < 0.001; p < 0.05; p < 0.05, respectively) compared to the naive cells. Cytokine-induced IL-17A production was different in both RA and PsA patients when compared to healthy donors (p = 0.0000026 and p = 0.0001047, respectively). By contrast, significant differences in IL-22 production were observed only between RA versus healthy or RA versus PsA patients (p = 0.000006; p = 0.0013454, respectively), but not between healthy donors versus PsA patients. CONCLUSION: The naive CD4 T-lymphocytes are predisposed to differentiate into Th17 cells and the in vitro Th17 cell differentiation is profoundly altered in both RA and PsA

    Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.

    Get PDF
    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our  understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
    corecore