1,131 research outputs found

    The Kohn mode for trapped Bose gases within the dielectric formalism

    Get PDF
    The presence of undamped harmonic center of mass oscillations of a weakly interacting Bose gas in a harmonic trap is demonstrated within the dielectric formalism for a previously introduced finite temperature approximation including exchange. The consistency of the approximation with the Kohn theorem is thereby demonstrated. The Kohn modes are found explicitly, generalizing an earlier zero-temperature result found in the literature. It is shown how the Kohn mode disappears from the single-particle spectrum, while remaining in the density oscillation spectrum, when the temperature increases from below to above the condensation temperature.Comment: 6 pages revte

    Redetermination of (E)-N,Nâ€Č-bis­(4-bromo­phen­yl)formamidine

    Get PDF
    In comprison with the previous structural study [Anulewicz et al. (1991 ▶). Pol. J. Chem. 65, 465–471], for which only the coordinates of all non-H atoms and of some H atoms were reported, the current redetermination of the title compound, C13H10Br2N2, additionally reports anisotropic displacement parameters for all non-H atoms and the coordinates of all H atoms, accompanied by higher accuracy of the geometric parameters. Two independent half-mol­ecules are present in the asymmetric unit, which are completed by a twofold rotation axis as symmetry element. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into dimers. Linear chains parallel to [102] are formed by inter­molecular Br⋯Br inter­actions of 3.4328 (7) Å between two Br atoms of adjacent mol­ecules. The dihedral angles between the benzene rings are 50.05 (15) and 75.61 (11)° in the two independent molecules. Owing to the twofold symmetry of the mol­ecules, H atoms attached to the N atoms are only half-occupied, leading to them being disordered over two positions of equal occupancy

    Stationary Properties of a Randomly Driven Ising Ferromagnet

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. Analytic results for the stationary state are presented in mean-field approximation, exhibiting a novel type of first order phase transition related to dynamic freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of the mean field theory may survive the presence of fluctuations.Comment: 5 pages in RevTex format, 7 eps/ps figures, send comments to "mailto:[email protected]", submitted to PR

    Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain

    Get PDF
    Promoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as a determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a reporter line in vivo showing that barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons

    Limitations of squeezing due to collisional decoherence in Bose-Einstein condensates

    Get PDF
    We study the limitations for entanglement due to collisional decoherence in a Bose-Einstein condensate. Specifically we consider relative number squeezing between photons and atoms coupled out from a homogeneous condensate. We study the decay of excited quasiparticle modes due to collisions, in condensates of atoms with one or two internal degrees of freedom. The time evolution of these modes is determined in the linear response approximation to the deviation from equilibrium. We use Heisenberg-Langevin equations to derive equations of motion for the densities and higher correlation functions which determine the squeezing. In this way we can show that decoherence due to quasiparticle interactions imposes an important limit on the degree of number squeezing which may be achieved. Our results are also relevant for the determination of decoherence times in other experiments based on entanglement, e.g. the slowing and stopping of light in condensed atomic gases using dark states.Comment: 16 pages RevTeX, 3 figure

    Properties of excitations in systems with a spinor Bose-Einstein condensate

    Full text link
    General theory in case of homogenous Bose-Einstein condensed systems with spinor condensate is presented for the correlation functions of density and spin fluctuations and for the one-particle propagators as well. The random phase approximation is investigated and the damping of the modes is given in the intermediate temperature region. It is shown that the collective and the one-particle excitation spectra do not coincide fully.Comment: 5 pages, 1 figur

    The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes.

    Get PDF
    Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture

    A New Method for Computing Topological Pressure

    Get PDF
    The topological pressure introduced by Ruelle and similar quantities describe dynamical multifractal properties of dynamical systems. These are important characteristics of mesoscopic systems in the classical regime. Original definition of these quantities are based on the symbolic description of the dynamics. It is hard or impossible to find symbolic description and generating partition to a general dynamical system, therefore these quantities are often not accessible for further studies. Here we present a new method by which the symbolic description can be omitted. We apply the method for a mixing and an intermittent system.Comment: 8 pages LaTeX with revtex.sty, the 4 postscript figures are included using psfig.tex to appear in PR

    Shifts and widths of collective excitations in trapped Bose gases by the dielectric formalism

    Full text link
    We present predictions for the temperature dependent shifts and damping rates. They are obtained by applying the dielectric formalism to a simple model of a trapped Bose gas. Within the framework of the model we use lowest order perturbation theory to determine the first order correction to the results of Hartree-Fock-Bogoliubov-Popov theory for the complex collective excitation frequencies, and present numerical results for the temperature dependence of the damping rates and the frequency shifts. Good agreement with the experimental values measured at JILA are found for the m=2 mode, while we find disagreements in the shifts for m=0. The latter point to the necessity of a non-perturbative treatment for an explanation of the temperature-dependence of the m=0 shifts.Comment: 10 pages revtex, 3 figures in postscrip
    • 

    corecore