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The presence of undamped harmonic center of mass oscillations of a weakly interacting Bose gas
in a harmonic trap is demonstrated within the dielectric formalism for a previously introduced
finite temperature approximation including exchange. The consistency of the approximation with
the Kohn theorem is thereby demonstrated. The Kohn modes are found explicitly, generalizing an
earlier zero-temperature result found in the literature. It is shown how the Kohn mode disappears
from the single-particle spectrum, while remaining in the density oscillation spectrum, when the
temperature increases from below to above the condensation temperature.
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I. INTRODUCTION

In 1961 W. Kohn [1] first noticed that the electron-
electron interaction does not change the cyclotron reso-
nance frequency in a bulk three dimensional gas. Brey et

al. [2] and Dobson [3] expanded the proof as a generalized

Kohn theorem for parabolic quantum wells. Independent
of the interactions the bare harmonic-oscillator frequency
is preserved in the excitation spectra. These oscillations
describe the center of mass movements along the main
axes of the trap. They are used for calibration in the
experiments with trapped Bose gases [4].
Many different model approximations were derived since
the discovery of Bose condensation in trapped dilute
Bose gases. For them the satisfaction of the Kohn theo-
rem provides an important consistency check. That the
Kohn theorem is satisfied within the zero temperature
Bogoliubov equations for a trapped dilute Bose gas was
proven by Fetter and Rokhsar [5]. The Kohn theorem
was demonstrated by Griffin and coworkers for various
approximations leading to hydrodynamic equations [6].
Stoof and coworkers checked the presence of the Kohn
modes in an approximate variational approach to the ki-
netic theory also in the collisionless regime [7]. A finite
temperature theory based on a linear response formalism
was given by Minguzzi and Tosi [8] and the validity of the
Kohn theorem in this approach was mentioned in their
paper, but without proof.
The purpose of the present paper is to examine the valid-
ity of the Kohn theorem in a specific finite temperature
approximation within the dielectric formalism. It was
introduced and studied in a previous paper [9]. It was
shown there that its results agree with those results which
can also be calculated in the Minguzzi and Tosi approach
[8], but that it gives additional results, in particular for
the 1-particle Green’s functions.
The starting point is the closed set of eigenvalue equa-
tions for the single particle Green’s functions and the

density-density correlation functions. We first identify
the eigenmodes for the center of mass movement. Then
we show that they are eigenfunctions of the density au-
tocorrelation function at the bare trap frequency.
We furthermore prove the validity of the Kohn theorem
in the single particle spectra in the Bose condensed sys-
tem and show how the Kohn modes disappear from the
single-particle spectrum, but remain in the density au-
tocorrelation spectrum if the number of particles in the
condensate goes to zero.

II. EIGENVALUE EQUATIONS FOR THE

DENSITY AND SINGLE PARTICLE

AUTOCORRELATION FUNCTIONS

In this section we consider the eigenvalue equations
for the single particle excitations and the density auto-
correlation function above and below the critical temper-
ature for Bose condensation Tc. The eigenfrequencies ωk

and the eigenmodes δntot,k(r) of the density correlation
function χ(r, τ ; r′, τ ′) = −〈Tτ [ñ(r, τ)ñ(r

′, τ ′)]〉, where
ñ(r) = n̂(r)− 〈n̂(r)〉, are given by

∫

d3 r′χ−1(r, r′, ωk)δntot,k(r
′) = 0 . (1)

It is useful to express χ in terms of its interaction-
irreducible part χ̃ via

χ(r, r′, ω)

= χ̃(r, r′, ω) +
g

h̄

∫

d3r1 χ̃(r, r1, ω)χ(r1, r
′, ω) . (2)

Here and in the following the tilde-sign denotes
interaction-irreducible quantities, which are given by di-
agrams which cannot be split into two by cutting a single
interaction line.
Then Eq. (1) takes the form
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δntot,k(r) =
g

h̄

∫

d3 r′χ̃(r, r′, ωk)δntot,k(r
′) . (3)

Besides we consider the matrix of Green’s functions

Gα,β(r, τ ; r
′, τ ′) = −〈Tτ

[

ϕ̂α(r, τ)ϕ̂
†
β(r

′, τ ′)
]

〉 (4)

with field operators in Matsubara representation
ϕ̂1(r, τ) ≡ ϕ̂(r, τ) and ϕ̂2(r, τ) ≡ ϕ̂†(r, τ). The cor-
responding eigenfrequencies ω′

k and eigenfunctions ϕα,k

are determined by
∫

d3r′G−1
αβ(r, r

′, ω′
k)ϕk,β(r

′) = 0 . (5)

Of course we need to make approximations for χ̃ and
Gαβ and describe now the model we previously intro-
duced within the framework of the dielectric formalism
[9,10]. The approximations will be further detailed in the
subsections IIA and II B and the appendix where they
will be used to derive the eigenvalue equations for the
different excitation spectra. At this point it is sufficient
to fix the approximations for the thermal density nT(r).
The external trap potential U(r) is

U(r) =
1

2
m

∑

i=1,2,3

Ω2
ix

2
i , (6)

where Ωi are the main trap frequencies.
The effective interaction potential v(r, r′) has the form
v(r, r′) = gδ(r − r

′) with the constant interaction
strength g. It is taken to contain already the complete se-
ries of ladder-diagrams describing repeated two-particle
scattering, i.e. it is the 2-particle T-matrix.
The stationary thermal density nT(r) is calculated using
as auxiliary quantity the stationary Hartree-Fock Greek’s
function GHF

(

h̄ω − ĤHF (r)
)

GHF (r, r′, ω) = h̄δ(r − r
′) . (7)

The Hartree-Fock Hamiltonian is

ĤHF (r) = −
h̄2

2m
∆+ U(r)− µ+ 2gntot(r) , (8)

with the chemical potential µ and the total density
ntot(r) = nT(r)+nc(r), where nc is the condensate den-
sity and nT is

nT(r) =
kBT

h̄
lim
η→0

∑

n

eiωnηGHF (r, r, ωn)

=
∑

k

n(εk)|ϕ
HF
k (r)|2 . (9)

ωn are the Matsubara frequencies 2nπkBT/h̄ and n(εk)
is the Bose factor to the eigenenergy εk for the eigenfunc-
tion ϕHF

k (r) of the Hartree-Fock Hamiltonian. The latter
will be taken as real, in the following, without restriction
of generality because the Hamiltonian (8) is real. Within
the model [9] all internal lines of diagrams are calculated
with GHF .

A. The uncondensed Bose gas

We first consider the uncondensed Bose gas. Here, the
lowest order contribution to χ̃ is the bubble diagram χ̃0

containing two Hartree-Fock Green’s functions

χ̃0(r, r′, ω) =

−
1

βh̄

∑

n

GHF (r, r′, iωn)G
HF (r′, r, iωn − ω) (10)

=
∑

k,l

ϕHF
k (r)ϕHF

l (r)
(n(εk)− n(εl))

ω + (εk − εl)/h̄
ϕHF
k (r′)ϕHF

l (r′)

l↔k
︷︸︸︷
=

1

2

∑

k,l

ϕHF
k (r)ϕHF

l (r) (n(εk)− n(εl))

×

[
1

ω + (εk − εl)/h̄

+
1

−ω + (εk − εl)/h̄

]

ϕHF
k (r′)ϕHF

l (r′) . (11)

Here we first performed the Matsubara sum and then
symmetrized the obtained expression with respect to
k ↔ l.
χ̃ is represented, within the model, by summing up the
multiple particle-hole scattering processes including ex-
change with the result, in symbolic notation

χ̃(r, r′, ω) =
∫

d3r1

[

1−
g

h̄
χ̃0(ω)

]−1

(r, r1)χ̃
0(r1, r

′, ω) . (12)

Inserting these diagrams χ̃ in Eq. (3), multiplying from
the left with the integral operator

[
1− (g/h̄)χ̃0(ω)

]
and

combining similar terms, the density correlation spectra
are given by

δntot,k(r) = 2
g

h̄

∫

d3 r′χ̃0(r, r′, ωk)δntot,k(r
′) . (13)

Above Tc the single particle Green’s function in our
model is just the Hartree-Fock approximation. Of course
the corresponding eigenfrequencies ω′

k = εk/h̄ given by

∫

d3r′{GHF }−1(r, r′, ω′
k)ϕ

HF
k (r′) = ϕHF

k (r) (14)

differ from those of the density correlation spectra ωk.

B. The Bose condensed gas

In the presence of the condensate the two kind of exci-
tations (1) and (5) share the same frequencies. This fact
is a consequence of the underlying spontaneous symme-
try breaking and can be conveniently formulated by using
the dielectric formalism. This formalism expresses all the
relevant quantities in terms of proper irreducible quanti-
ties (whose graphs remain connected even if one cuts an
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arbitrary, single interaction line or propagator). For the
Bose condensed gas we have to include interaction pro-
cesses with the condensate atoms, involving many fur-
ther diagrams within our approximation. In order to
avoid a somewhat lengthy detour we refer the interested
reader to the appendix, where we briefly summarize the
approximations and the derivation of the following equa-
tions. These approximations have been presented in de-
tail in reference [10]. The complete set of equations for
the eigenfunctions within our model are (Eq.(A12))

(

H̃0(r) + gnc(r)
)

ϕ1,k(r) + gΦ2
0(r)ϕ2,k(r) =

h̄ωkϕ1,k(r)− 2gΦ0(r)δnT,k(r) , (15)
(

H̃0(r) + gnc(r)
)

ϕ2,k(r) + gΦ∗2
0 (r)ϕ1,k(r) =

−h̄ωkϕ2,k(r)− 2gΦ∗
0(r)δnT,k(r) , (16)

where we defined

δnc,k(r) = Φ∗
0(r)ϕ1,k(r) + Φ0(r)ϕ2,k(r) (17)

and

δnT,k(r) = δntot,k(r)− δnc,k(r) . (18)

Due to the presence of the condensate we have quasiparti-
cle excitations with two-component vector fields ϕk,α(r)
(α = 1, 2) as eigenfunctions.
The condensate wave function Φ0(r) is calculated
from the finite-temperature generalization of the Gross-
Pitaevskii-equation

H̃0(r)Φ0(r) = 0 , (19)

with the Hamiltonian H̃0(r)

H̃0(r) = −
h̄2

2m
∆+ U(r)− µ+ g|Φ0(r)|

2 + 2gnT(r) .

(20)

We allow complex solutions of Eq. (20), i.e. our consid-
erations apply also to the case where vortices are present.
The total density is given by the sum nT + nc with (9)
and nc(r) = |Φ0(r)|

2.
In the appendix we show (see Eq. (A10)) that in the
presence of a Bose condensate Eq. (13) must be rewrit-
ten as

δnT,k(r) = 2
g

h̄

∫

d3 r′χ̃0(r, r′, ωk)δntot,k(r
′) , (21)

which can be also expressed in terms of δnc,k

δnT,k(r) = 2
g

h̄

∫

d3 r1

∫

d3 r2

×
[

1− 2
g

h̄
χ̃0(ωk)

]−1

(r, r1)χ̃
0(r1, r2, ωk)δnc,k(r2) . (22)

With Eq. (17) we see that Eq. (15) and (16) still form a
set of homogeneous coupled equations for ϕα,k.

For nc = 0 Eq. (15) agrees with the Hartree-Fock equa-
tion. In the low temperature region T → 0 we have
χ̃0 → 0 and according to Eq.(21) δnT → 0. Therefore,
at T ≈ 0 Eqs. (15) and (16) approach the usual Hartree-
Fock Bogoliubov Popov equations.
Eqs. (15) and (16) agree with the linearization of the time
dependent Gross-Pitaevskii equation around its station-
ary solution Φ0(r) if the thermal density is assumed to
be time-dependent and is also linearized around its sta-
tionary value nT(r). Of course we then need additional
equations like Eqs. (22) and (17) to fix δnT,k.

III. THE KOHN THEOREM

The Kohn theorem states that the center of mass os-
cillations of the total density ntot along the main axes of
the trap are unchanged by the interactions and appear
at the bare trap frequencies Ωi as exact eigenvalues.
For the proof we choose arbitrarily one of those directions
ei. The center of mass movement is just a displacement
of the total density in the trap.
Therefore, the eigenfunctions to the Kohn frequency Ωi

should be given by the infinitesimal displacement oper-
ations η ∂i acting on the stationary densities (η ≪ 1)
η ∂in(r) = n(r + η ei)− n(r) = δni(r).
The
Kohn mode δntot,i(r) should therefore be proportional
to ∂intot(r) = ∂inc(r) + 2

∑

k n(εk)ϕ
HF
k (r)∂iϕ

HF
k (r) if

we insert the expression for nT.
We prove that the Kohn theorem is satisfied in two steps
where we set ω = Ωi in all the expressions. First we
show that we get δnT,i = ∂inT on the left hand side of
Eq. (21) if we insert δntot,i = ∂intot on the right hand
side. Using the result δnT,i = ∂inT in Eqs. (15) and (16)
we calculate the corresponding ϕα,k from which we derive
δnc,i = ∂inc. We hereby reobtain δntot,i = ∂intot proving
that ∂intot and ϕα,k are eigenfunctions of the equations
to the trap frequency Ωi. In the following the effect of
the partial differential operator on the eigenfunctions of
ĤHF are evaluated by using the commutator relations

[

∂i, Ĥ
HF (r)

]

= mΩ2
ixi + 2g∂intot(r) , (23)

[

xi, Ĥ
HF (r)

]

=
h̄2

m
∂i . (24)

We obtain the matrix elements of the coordinate and the
differential operators within the basis of the Hartree-Fock
eigenfunctions

(εk − εl)〈l|xi|k〉 =
h̄2

m
〈l|∂i|k〉 , (25)

(εk − εl)〈l|∂i|k〉 = mΩ2
i 〈l|xi|k〉

+2g〈l|∂intot(r)|k〉 , (26)

where we used the abbreviation
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〈l|Â|k〉 =

∫

d3rϕHF
l (r)ÂϕHF

k (r) . (27)

In the first step we have to insert δntot,k = ∂intot in the
expression (11) for the right hand side of Eq. (21) with
ω = Ωi

δnT,i(r) = g
∑

k,l

ϕHF
k (r)ϕHF

l (r) (n(εk)− n(εl))

×

[
〈k|δntot,i|l〉

h̄Ωi + (εk − εl)
+

〈k|δntot,i|l〉

−h̄Ωi + (εk − εl)

]

. (28)

We further concentrate on the coefficients corresponding
to ϕHF

k (r)ϕHF
l (r) (n(εk)− n(εl))

g

[
〈l|δntot,i|k〉

h̄Ωi + (εk − εl)
+

〈l|δntot,i|k〉

−h̄Ωi + (εk − εl)

]

= 2g

[
(εk − εl)〈l|δntot,i|k〉

(εk − εl)2 − (h̄Ωi)2

]

(29)

(26)
︷︸︸︷
=

[
(εk − εl)

2〈l|∂i|k〉 − (εk − εl)mΩ2
i 〈l|xi|k〉

(εk − εl)2 − (h̄Ωi)2

]

(30)

(25)
︷︸︸︷
=

[
(εk − εl)

2〈l|∂i|k〉 − (h̄Ωi)
2〈l|∂i|k〉

(εk − εl)2 − (h̄Ωi)2

]

(31)

= 〈l|∂i|k〉 . (32)

We obtain the result

δnT,i(r)

=
∑

k,l

〈l|∂i|k〉ϕ
HF
k (r)ϕHF

l (r) (n(εk)− n(εl)) (33)

= 2
∑

k,l

n(εk)ϕ
HF
k (r)ϕHF

l (r)〈l|∂i|k〉 , (34)

where in the last step we used the antisymmetry of
〈l|∂i|k〉 under exchange of k and l. The expression (34)
for δnT,i is exactly the partial differential of nT with
respect to xi. Therefore, we get by comparing the left
and the right hand side of Eq. (21) δnT,i = ∂inT.
In the second step we have to insert δnT,i = ∂inT in
Eqs. (15) and (16). But then it is straight forward to
see that Eqs. (15) and (16) are solved for ω = Ωi and
δnT,i = ∂inT by setting

ϕ1,i(r) = (∂i − ximΩi/h̄)Φ0(r) , (35)

ϕ2,i(r) = (∂i + ximΩi/h̄)Φ
∗
0(r) . (36)

Inserting these expressions in Eq. (17) we get δnc(r) =
∂inc(r) and hence δntot(r) = δnc(r) + δnT(r)
= ∂intot(r), completing the proof. Therefore the expres-
sions ∂intot(r) and ϕα,i(r) are eigenfunctions with the
main trap frequencies Ωi as eigenfrequencies.
Fetter and Rokhsar [5] proved that (35), (36) are the
Kohn modes of the Bogoliubov equations at T = 0. Our
preceding considerations generalize their proof to finite
T . In the whole calculation we have chosen to fix the

normalization of the density fluctuations δntot,i = ∂intot.
By performing a simple partial integration we get the
normalization of the Kohn eigenfunctions ϕ1,i(r), ϕ2,i(r)
according to

∫
d3r(|ϕ1,i(r)|

2 − |ϕ2,i(r)|
2) = 2mΩiNc/h̄,

where Nc is the total number of atoms in the condensate.
With Nc → 0 the Kohn modes are seen to disappear from
the single-particle spectrum.
For Nc = 0 (i.e. Φ0 = 0 = nc) Eq. (15) agrees with
the usual Hartree-Fock equation where the Kohn mode
is no longer present in the single particle spectra. But
the Kohn modes survive in the density correlation spec-
tra given by Eq. (21) for ntot = nT. In this case the
proof of the Kohn theorem is already finished after the
first step of our proof.

IV. DISCUSSION AND SUMMARY

The fundamental difference between a spatially homo-
geneous and a trapped Bose gas is the absence of the
conservation las of momentum in the latter, which plays
an important role in the theory of homogeneous systems.
Certainly any approximation made in homogeneous sys-
tems should satisfy this fundamental law. In the special
case of harmonic trapping potentials the momentum con-
servation law is replaced by Kohn’s theorem, which states
that there are three exact special modes where the cen-
ter of mass oscillates harmonically with the three main
trap frequencies. While this is easily proven for the ex-
act Hamiltonian, the question whether any given approx-
imation still satisfies this theorem is, in general, a rather
nontrivial one. In the case of Bose condensed gases the
question acquires an additional aspect, because of the co-
incidence of single particle and density oscillation spectra
in Bose condensates. The Kohn mode, which is a density
oscillation mode, must then have a single particle coun-
terpart, which somehow disappears from the spectrum if
the temperature is raised, so that the condensate disap-
pears and the single particle spectrum and the density
oscillation spectrum become decoupled.
In the present paper we have examined these questions
for a specific approximation which includes direct inter-
action and exchange and is formulated within the dielec-
tric formalism, which guarantees form the onset the co-
incidence of single particle and density oscillation spec-
tra in the Bose condensed regime. By deriving a closed
set of equations (15)-(18) for the single particle modes
and the density modes generalizing the usual Bogoliubov-
deGennes equations in Popov approximation, and solv-
ing them for the special coupled modes, corresponding
for the densities just to a translation, we could not only
verify the Kohn theorem for the closed set of equations,
but obtain explicit expressions for the single particle
modes (35), (36). These expressions for the latter are
beautifully simple. They generalize the corresponding
zero-temperature result obtained by Fetter and Rokhsar
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by replacing the zero-temperature solution of the Gross-
Pitaevskii equation by its finite counterpart of our spe-
cific model within the dielectric formalism. In this form
our results (35), (36) show explicitly how the single par-
ticle component of the Kohn mode vanishes while keep-
ing the density oscillations component unchanged, if the
number of particles in the condensate is sent to zero.
A simpler version of the model treated here leaves out
all exchange processes. This is then the simplest model
of an interacting Bose gas which one can set up within
the dielectric formalism. It was analyzed in detail for a
homogeneous Bose gas in [11], but one can also analyze
it for the trapped gas along the lines of [9] extending
work in [12]. Using the same procedure as employed in
the present paper one can readily show that the Kohn
theorem is respected also by this simpler model.

APPENDIX:

In the first part of the appendix we introduce the nec-
essary quantities given by our model [9,10] including ex-
change to describe the density autocorrelation function
for T < Tc. Then we show how Eqs. (15),(16), which
we have used here as a convenient starting point, are ob-
tained. We first note that the contributions to χ̃ above Tc

given in Eq.(12) are not only interaction line irreducible

but also propagator line irreducible. We denote these
so-called regular contributions by χ̃(r). Below Tc we get
contributions to χ̃ in addition to the regular ones, namely
[9]

χ̃(r, r′, ω) = χ̃(r)(r, r′, ω) +

∫

d3r1

∫

d3r2Λ̃
(r)
α (r, r1, ω)

×G̃αβ(r1, r2, ω)Λ̃
(r)∗
β (r2, r

′, ω) . (A1)

The interaction line irreducible Green’s functions G̃αβ

are related to the exact Green’s functions Gαβ by the
Dyson-type equation

Gα,β(r, r
′, ω) = G̃α,β(r, r

′, ω)

+
g

h̄

∫

d3r1

∫

d3r2

∫

d3r3 G̃α,γ(r, r1, ω)

×Λ̃∗
γ(r1, r2, ω)Λδ(r2, r3, ω)Gδ,β(r3, r

′, ω) , (A2)

where the vertex functions Λα are related to their regular
parts by

Λα(r, r
′, ω) = Λ̃α(r, r

′, ω)

+
g

h̄

∫

d3r1 χ̃
(r)(r, r1, ω)Λα(r1, r

′, ω) . (A3)

The regular vertex functions Λ̃
(r)
α express the coupling of

the single-particle Green’s functions G̃αβ to the density
autocorrelation function χ̃. The coupling comes from ex-
citation processes out of and relaxation processes into the
condensate.

In the model introduced in [9,10] the vertex functions

Λ̃
(r)
α contain the lowest order contributions given by

Φ∗
α,0(r) and a series of higher order diagrams correspond-

ing to the diagrams summed up in Eq. (12)

Λ̃(r)
α (r, r′, ω) = Φ∗

α,0(r)δ(r − r
′) +

g

h̄

∫

d3r1Λ̃
(r)
α (r, r1, ω)

×χ̃0(r1, r
′, ω) . (A4)

If we allow Φ0 to be complex we have to use Φ0 for the ex-
citation processes due to the corresponding annihilation
of a condensate atom and Φ∗

0 in the opposite case. In
order to simplify the notations we write Φα,0 (α = 1, 2)
with Φ1,0 = Φ0 and Φ2,0 = Φ∗

0.

G̃αβ is in general expressed by the regular part Σ̃
(r)
αβ of

the self-energies in the form

[
1

h̄
G̃(ω)

]−1

(r, r′) = δ(r − r
′)

×

(

h̄ω + ∇2h̄2

2m + µ− U(r) 0

0 −h̄ω + ∇2h̄2

2m + µ− U(r)

)

−Σ̃(r)(r, r′, ω) . (A5)

The approximation of the model for Σ̃(r) is defined by

Σ̃
(r)
αβ(r, r

′, ω) = δ(r − r
′)(gnc(r

′) + 2gnT(r
′))δαβ ,

+
g2

h̄
Φα,0(r)χ̃

(r)(r, r′, ω)Φ∗
β,0(r

′) .

(A6)

Like in Eqs. (12),(A4) we add to the lowest order regu-
lar self-energy diagrams gnc(r

′) + 2gnT(r
′) appearing in

the diagonal of Σ̃(r) the sum over multiple particle-hole
scattering processes including exchange with additional
factors Φ∗

0, Φ0 due to excitation processes out of and the
absorption processes into the condensate.
Below Tc the eigenfunctions ϕ1(r) and ϕ2(r) can be ex-
pressed as a linear functional of the corresponding eigen-
function δntot,k(r) of the density autocorrelation func-
tion spectra (see [12])

ϕα,k(r) =

∫

d3r1

∫

d3r2

∑

β

G̃αβ(r, r1, ωk)

×Λ̃(r)∗(r1, r2, ωk)δntot,k(r2) . (A7)

Without any approximations for the regular quantities

Σ̃
(r)
αβ , χ̃

(r) and Λ̃
(r)
α the functions ϕα(r) would fulfill Eq.

(5) if δntot,k(r) fulfills Eq. (3).
We insert Eq. (A1) in Eq. (3) and take into account
(A7) to get

δntot,k(r) =

∫

d3r′
[ g

h̄
χ̃(r)(r, r′, ωk)δntot,k(r

′)

+Λ̃(r)
α (r, r′, ωk)ϕα,k(r

′)
]

(A8)
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Defining δnc,k(r) = Φ∗
0(r)ϕ1,k(r)+Φ0(r)ϕ2,k(r) and sep-

arating out the the lowest order diagram Φ∗
α,0 of Λ̃

(r)
α we

derive an equation for δnT,k = δntot,k − δnc,k

δnT,k(r) =
g

h̄

∫

d3r′χ̃(r)(r, r′, ωk)

× (δnc,k(r
′) + δntot,k(r

′)) . (A9)

Eliminating δnc,k by using δnc,k = δntot,k − δnT,k this
equation is solved by

δnT,k(r) = 2
g

h̄

∫

d3r′χ̃0(r, r′, ωk)δntot,k(r
′) , (A10)

as can be verified by using the result (12) for χ̃(r).

Acting with the operator
[
1
h̄
G̃(ωk)

]−1

αβ
(r, r′) on ϕβ,k(r

′)

and using (A1)-(A7) we obtain

(±h̄ωk − H̃0(r))ϕ 1

2
,k(r)

=
g2

h̄

∫

d3r′Φ 1

2
,0(r)χ̃

(r)(r, r′, ωk)δnc,k(r
′)

+gΦ 1

2
,0(r)

∫

d3r′
(

δ(r − r
′) +

g

h̄
χ̃(r)(r, r′, ωk)

)

×δntot,k(r
′) , (A11)

where H̃0 is given by (20). Eqs. (A11) can be simplified
with the help of Eq. (A9) and we can directly give the
results

(±h̄ωk − H̃0(r))ϕ 1

2
,k(r) =

gΦ 1

2
,0(r) (δntot,k(r) + δnT,k(r)) . (A12)

Eqs. (A12) agree with Eqs. (15) and (16) using the
definition δnc,k = Φ∗

0ϕ1,k +Φ0ϕ2,k.
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preprint, cond-mat/0006475.
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