94 research outputs found

    Bone Density in Children with Single Ventricle Physiology

    Get PDF
    Background Children with chronic diseases are at risk for low bone mineral density (BMD). There are no studies of BMD in children with congenital heart disease and particularly SV. Children with this defect are often treated with warfarin, suspected to negatively impact BMD in adults. We assessed BMD in patients with single ventricle (SV) physiology and compared the BMD of subjects taking warfarin to those who were not. Methods Subjects 5-12 years with SV were included. BMD z-scores by dual-energy X-ray absorptiometry (DXA) of the spine and total body less head (TBLH) were obtained. Calcium intake, activity level, height, and Tanner stage were assessed. Linear regression models and t-tests were used to investigate differences between participants and normative data as well as between subjects' subgroups. Results Twenty six subjects were included; 16 took warfarin. Mean BMD z-score at the spine was significantly lower than expected at -1.0±0.2 (p<0.0001), as was the BMD z-score for TBLH at - 0.8±0.2 (p<0.0001). Those results remained significant after adjusting for height. Subjects who were on warfarin tended to have lower BMD at both the spine and TBLH than those who were not, with a z-score difference of 0.6±0.46 at the spine (p=0.106) and a difference of 0.4±0.34 at TBLH (p=0.132). Conclusions BMD is significantly reduced in children with SV. Warfarin appears to lower BMD but the effect is less conclusive. Continued evaluation is recommended for these patients at risk for reduced bone density. Evaluation of other cardiac patients on warfarin therapy should also be considered

    Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    Get PDF
    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime

    Thermal aging kinetic and effects on mechanical behavior of fully recycled composite based on polypropylene/polyethylene blend

    Get PDF
    The effect of thermal oxidation of a fully recycled carbon fibers reinforced stabilized polypropylene/polyethylene blend on the mechanical properties has been studied at 120, 130 and 140 °C. In a first step, several analyses by FTIR and UV spectrometry and differential scanning calorimetry were performed in order to detect and monitor the evolution of the antioxidants and oxidation products in the materials. This approach aims to well understand and identify the aging mechanisms that will be modeled in a second step in a kinetic model capable of predicting the evolution of carbonyl build-up while taking into account the presence of the different antioxidants. Modeling results showed a good correlation between the kinetic behavior and the obtained experimental data. Furthermore, the effect of thermal aging on the mechanical behaviors of the composite and the matrix were studied at the macroscopic scale at different strain rates. It has been shown that the thermal oxidation affects only the elongation at break. The numerical values of the oxidation products generated by the kinetic model allowed linking the evolution of the mechanical behavior under aging with the physicochemical state of the material

    Growth performance, in vitro antioxidant properties and chemical composition of the halophyte Limonium algarvense Erben are strongly influenced by the irrigation salinity

    Get PDF
    Limonium algarvense Erben (sea lavender) is a halophyte species with potential to provide natural ingredients with in vitro antioxidant, anti-inflammatory, neuroprotective and antidiabetic properties. This study reports for the first time the 1) cultivation of sea lavender in greenhouse conditions under irrigation with freshwater (approx. 0 mM NaCl) and saline aquaculture wastewater (300 and 600 mM NaCl), and 2) the influence of the irrigation salinity on the plant performance (e.g growth, number of produced leaves and flowers), in vitro antioxidant properties [radical scavenging activity (DPPH and ABTS), ferric reducing antioxidant power (FRAP), metal chelating properties on copper (CCA) and iron (ICA)], toxicity (in vitro on three mammalian cell lines) and chemical composition (determined by LC-ESI-HRMS/MS). The freshwater-irrigated plants had better growth performance than those irrigated with saltwater. Extracts from wild plants, had the highest antioxidant activity, but those from cultivated ones kept high in vitro antioxidant properties and interesting chemical profile. The flowers' extracts of plants irrigated with 300 mM NaCl had the highest antioxidant activities against DPPH, whereas those from freshwater-irrigated plants were more active on ABTS, CCA and FRAP. Most of the extracts showed nil toxicity. The flowers' extracts displayed the highest diversity of compounds, mainly quercetin, apigenin, luteolin, naringenin and their glycoside derivatives. Moreover, their abundance varied with the irrigation salinity. These data indicate that sea lavender plants can be successfully cultivated in greenhouse conditions under fresh- and saltwater irrigation, maintaining interesting biological and chemical properties.Funding Agency Portuguese Foundation for Science and Technology Portuguese National Budget CCMAR/Multi/04326/2019 GreenVet project ALG-01-0145-FEDER-028876 XtrerneAquaCrops FA-05-2017-028 Lisboa-01-0145-FEDER-022125-RNEM-IST ID/QUI/00100/201 Portuguese Foundation for Science and Technology SFRH/BD/116604/2016 CEECIND/00425/2017info:eu-repo/semantics/publishedVersio

    Nutritional Status of Cotton Plant Assessed by Compositional Nutrient Diagnosis (CND)

    Get PDF
    The use of compositional nutrient diagnosis (CND) to assess the nutritional status of cotton crop is quite important to improve knowledge on plant nutritional requirement and assist the fertilizer recommendation. The aim of this chapter is to introduce the possibility of using CND for cotton crop. This method has scarcely been used to assess the nutritional status of cotton plant although a few results have indicated that it can be promising. In fact, CND methodology seems to be better in the nutritional diagnosis than traditional methods such as sufficient range (SR) and critical value approach (CVA). Its efficiency has increased with the possibility of applying multivariate analysis, principal component analysis (PCA), canonical correlation, and so on. The application of PCA possibility to note some interactions among the nutrients is important for understanding the dynamics of nutrients in plants

    Atrioventricular thrombus in a 14-year-old patient: a case report

    Get PDF
    Right atrioventricular thrombus was diagnosed by echocardiography in a 14-year-old boy. Thrombus was reached through the right ventricle to the pulmonary artery and it was caused to tricuspit valve insufficiency. Surgical thrombectomy was performed and, he was treated with oral anticoagulation in postoperative period

    Immersed Fatigue Performance of Glass-Fibre Reinforced Composites for Tidal Turbine Blade Applications

    Get PDF
    This work presents an experimental study on the fatigue of glass fibre-reinforced polymers (GFRP) for use in ocean energy structures, with particular emphasis on the effects of water saturation. Quasi-isotropic specimens with either epoxy or vinyl-ester matrix were reinforced with E-glass or E-CR glass and immersion-aged for a period of up to two and a half years, using a moderately accelerated ageing technique. A number of the specimens were kept under constant tensile stress while immersed. The water-saturated specimens were fatigue tested while immersed in water. Dry specimens of the same materials were also fatigue tested and comparative results are presented. It was established that moisture saturation has a detrimental stress-dependent effect on the fatigue strength of the epoxy/E-glass composite. The measured evolution of specimen stiffness during the fatigue cycles was similar for both dry and water-saturated coupons

    More Games Teams Play Activities and Games for Powering Up Your Team's Potential

    No full text
    351.;xix.;28 c
    corecore