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Abstract: This work presents an experimental study on the fatigue of glass-fibre reinforced 

polymers (GFRP) for use in ocean energy structures, with particular emphasis on the effects 

of water saturation. Quasi-isotropic specimens with either epoxy or vinyl-ester matrix were 

reinforced with E-glass or E-CR glass and immersion-aged for a period of up to two and a 

half years, using a moderate accelerated ageing technique. A number of the specimens were 

kept under constant tensile stress while immersed. The water saturated specimens were 

fatigue tested while immersed in water. Dry specimens of the same materials were also 

fatigue tested and comparative results are presented. It was established that moisture 

saturation has a detrimental stress dependent effect on the fatigue strength of the epoxy/E-

glass composite. The measured evolution of specimen stiffness during the fatigue cycles was 

similar for both dry and water saturated coupons. 

 

1. Introduction 

Tidal turbines have been at the forefront in the introduction of marine renewable energy 

technologies due to their repeatable, dependable, power delivery on every tide. Most modern 

tidal turbines have a configuration similar to large wind turbines with two or three aerofoil 

(or hydrofoil) cross-section blades rotating a horizontal main shaft which powers an electric 

generator. The higher density of seawater and the lower velocity of tidal currents result in 

approximately a 100 fold increase in fluid momentum and therefore tidal turbines are smaller 

in diameter and rotate more slowly than wind turbines with similar power output. For 

example a 24 m diameter tidal turbine rotates at 10 RPM and produces 1.5 MW which is 

approximately one third of the diameter and half the rotational speed of a wind turbine with 

similar power output [1][2]. The net effect on the blade structure is higher forces within a 

smaller envelope which requires maximum possible performance from the materials used to 

manufacture the blades.  

GFRP materials have proven to be the most cost competitive material for wind turbine blades 

and it is expected that they will be used extensively in marine renewable energy device 

structures. However there are concerns about the degradation of composite materials after 
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long immersion in seawater. This paper details a series of investigations into the degradation 

in strength and stiffness of GFRP materials during long immersion periods. 

Glass fibre reinforced epoxy has a good track record in resisting environmental degradation 

during marine use and glass-fibre reinforced vinyl-ester is widely used for tanks and pipes 

carrying both water and corrosive liquids. In some of these applications the standard boat 

construction technique of creating a protective barrier (gel coat) between the water and the 

GFRP may be possible but in many cases it will not. For example some tidal turbine blade 

designs are flooded inside to equalise hydrostatic pressure and reduce the effect of pressure 

variations as the blade rotates in the water column. While a barrier technique may still be 

possible in this case it would probably be difficult and expensive to implement. Barrier layers 

may also suffer from either abrasion by sand and grit suspended in the water or from surface 

cracking at strain levels likely to be experienced by marine renewable energy devices. 

Finally it should be noted that it is very difficult to produce a barrier that can actually prevent 

diffusion of the small amount of moisture (1–2%) required to saturate GFRP over the 10 to 

20 year lifetime of these devices. Certainly the standard isophthalic polyester gelcoat is not 

capable of this level of performance [3]. For all these reasons it is conservative to assume 

that immersed GFRP will become moisture-saturated relatively early in its life and it is 

therefore important for a designer to know what degradation in material properties can be 

expected over the life of the machine component. 

The matrix of a polymer-matrix composite has a protective function and invariably will form 

the outer surface of the GFRP component. In cases where moisture protection is required, 

very often the outer layer is mostly or entirely matrix material. When seawater comes in 

contact with a polymer surface, water molecules diffuse into the polymer matrix material, 

filling any small voids and hydrolysing any unreacted components of the polymer. The water 

molecules also bond with elements of the polymer chains reducing crosslink density, thereby 

reducing both modulus and glass transition temperature [4]. The composite also swells 

slightly to a level approximately equal to the volume of water absorbed [5]. For laminates 

with a large surface to thickness ratio the 1-D Fickian equation gives the amount of water 

absorbed [6] 

𝑀 =  𝑀𝑠𝑎𝑡 (1 − 𝑒
−7.3(

𝑡𝐷
ℎ2)

0.75

) (1) 

where M is the percent moisture content at any time t, 𝑀𝑠𝑎𝑡 is the final percentage saturation 

level, h is the thickness of the laminate and D is the diffusion constant of the material. The 

saturation level depends on the particular matrix polymer and varies between approximately 

1% for vinyl-ester to 3% for epoxy. GFRP composites tend to have near Fickian absorption 

characteristics with deviations from Fickian behaviour attributed to voids, hydrolysis and 

molecular relaxation [7]. Void content can vary more than the small percent saturation 

discussed above so it should be noted that % weight gain is not a reliable indicator of the 

change in mechanical properties [8]. Post-cure of the composite, involving soaking for a 

period at elevated temperatures, is recommended to minimise unreacted components thereby 

reducing hydrolysis. Post-cure also maximises cross-linking which is important to achieve 

the maximum strength and stiffness in the material. Postcure can be expensive, particularly 

if ovens are used for large structures, but lower cost heating solutions do exist [9] and for 

high performance applications post-cure is definitely recommended.  

While seawater is much more corrosive to many metals than fresh water, studies with SEM 

on the fracture surfaces of GFRP have found no evidence of salt ions inside the composite 
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material and conclude that the salt ions do not migrate into the composite [10]. Other studies 

have shown that seawater is slower to diffuse into the matrix but otherwise has similar effects 

to fresh water [11][12][13]. 

As the water diffuses through the polymer matrix it next encounters the interface zone 

between the matrix and fibres. The interface between the matrix polymer and the glass fibres 

is enhanced by silane molecules which are contained in a sizing compound applied to the 

glass fibres immediately after they are drawn. One end of the silane molecule bonds well to 

the glass surface and the other end reacts with thermosetting polymers during cross linking 

[14]. When a composite material is immersed in water the size compound absorbs water 

either through direct contact with the water or from the saturated matrix. This hydrolyses 

some of the bonds between matrix and fibre, reducing the interfacial bond strength and 

thereby the overall strength of the material. After failure the evidence for the reduction in 

bond strength can be seen by increased fibre pullout. This is particularly evident when 

accelerated ageing at high temperatures is used [15]. Interlaminar shear strength (ILSS) and 

45° off-axis tests are used as an indication of changes in interface bond strength and tests on 

GFRP laminates have shown reductions of 8 to 37% after ageing in room temperature water 

[3][16]. Studies have shown that most of the bond strength recovers upon re-drying the 

composite material, particularly when the initial loss in bond strength was due to high 

temperature ageing [3][17]. 

Having diffused through the matrix and interface zone the water molecules may finally come 

in contact with the glass fibre surface. Water is detrimental to the strength of naked (unsized) 

glass fibres due to the occurrence of stress corrosion cracking (SCC). This occurs when water 

molecules migrate to the tip of cracks or flaws on the surface of glass that is under stress and 

accelerate the cracking process [17]. The silane coupling agents mentioned earlier were 

developed with an ability to bond strongly to the glass fibre surface and this reduces the 

interaction of moisture with the glass, preventing or reducing SCC in humid atmospheres. 

However, when GFRPs are immersed in water for long periods they absorb more water than 

would be absorbed from air at normal humidity levels. This means that there is more water 

available at the interface and the protective effect of the silane may not be sufficient to 

prevent SCC from occurring, particularly at higher stress levels or higher temperatures. 

Some studies on SCC in water-aged composites with E-CR fibres show that, at room 

temperature, the strains needed to precipitate SCC activity are at or above the maximum 

fatigue strains (1.5%) found in GFRP fatigue-life curves [18]. When the temperature of the 

ageing water increases, e.g. above 50°C, it stimulates increased chemical activity and in 

combination with residual stresses in the fibre can cause SCC of the fibres to occur even in 

the absence of externally applied stresses. Positive identification of this kind of damage can 

be provided by SEM; but it would also be suspected if GFRP materials do not regain their 

strength after re-drying. This has been shown to occur with ageing temperatures as low as 

71°C [19] but others have found that even boiling water ageing effects are mostly reversible 

[20]. 

A corollary to the recommendations for post-cure mentioned earlier is that laminates will 

post cure if placed in warm water. It is therefore important that one does not compare 

mechanical properties taken without post-cure to those obtained from laminates 

inadvertently post-cured via immersion in warm or hot water. In the latter case, any 

degradation due to water immersion may well be offset (at least partially) by the increase in 

performance due to the unintentional post-cure. 

There are quite a few reports of quasi-static tensile testing of water saturated GFRP laminates 

in the literature and as a group they generally show reductions in tensile strength of between 
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25% and 50% due to water saturation. On the other hand there are relatively few 

investigations of fatigue testing water saturated GFRP and fewer still which report fatigue 

life comparisons between the wet and dry conditions. Those reports show up to a 20% 

reduction in tension-tension (R=0.1) fatigue strength of water saturated unidirectional 

laminates [10] and up to 40% reduction in bending fatigue strength [23]. This work therefore 

complements those studies by reporting on fatigue testing of multi-directional laminates (QI) 

in both dry and water saturated conditions. 

Segovia et al. [21] have tested the effect of an applied bending stress on an orthophthalic 

polyester / E-glass laminate immersed in room temperature seawater. Higher stress levels 

(44% of UTS) resulted in increased water absorption (24%) but only caused modulus and 

bending strength to reduce by 7% relative to unstressed specimens immersed for the same 

time. Other tests, however, found no additional loss in strength or modulus due to an applied 

bending stress (20% of ultimate) for isophthalic polyester / E-glass and vinyl-ester / E-glass 

samples immersed for 2.2 years in 30°C water [22]. No reports have been found of fatigue 

strength testing after combined immersion and stress ageing. An experimental study of 

fatigue strength testing after combined immersion and tensile stress ageing was conducted 

as part of the work described in this paper. 

This paper deals with an experimental investigation of the water saturation effects discussed 

above. Modelling of saturated laminates will be discussed in a later paper. The specific 

objectives for this work were (i) to manufacture high quality laminates, for use in a tidal 

turbine blade, (ii) to perform acceleration ageing on these laminates at a low temperature in 

order to mimic the water saturation level found in an operating tidal turbine blade, (iii) to 

investigate the effect of that saturation on the tensile and fatigue strength of the materials, 

(iv) to determine the effect of a constant stress during the immersion ageing process and 

finally, (v) to determine the effect of water saturation on the modulus of the material. 

2. Experimental method 

2.1 Coupon manufacture 

Quasi-isotropic layups (shown in Figure 1) of non-crimp E-glass and E-CR glass were 

infused with vinyl ester or epoxy resins using the VARTM (Vacuum Assisted Resin Transfer 

Moulding) process as described elsewhere [24]. The laminates were oven cured at 80°C for 

approximately 4 hours. Table 1 shows details of the different material combinations and the 

ageing methods to which they have been subjected. These combinations allow comparison 

between a composite material with a matrix resin which is highly resistant to water (Scott 

Bader VE676 vinyl ester) and one with moderate resistance to water but good fatigue 

resistance (Gurit Ampreg 22 epoxy). They also allow comparisons between composites with 

water resistant fibres (E-CR, Advantex fibres) and standard E-glass fibres (Ahlstrom, 

#42007). In both cases the fibres were coated with the manufacturers “multi-compatible” 

sizing which are compatible with polyester, vinyl ester and epoxy resins. 

2.2 Accelerated ageing procedure 

Accelerated ageing has been used to simulate the effect of approximately 20 years in cold 

(12°C) seawater by immersing the samples in warm (30°to 40°C) water for up to two and a 

half years. Movement of moisture by diffusion into the polymer resin and damage processes 

within the composite are accelerated by increasing the temperature, or atomic vibration level, 

of the material. The Arrhenius law describes how the diffusion rate (𝑘𝑑) varies with 

temperature 
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 𝑘𝑑 = 𝑘0𝑒−
𝐸

𝑅𝑇 

 

(2) 

where 𝑘0 is the reference diffusion rate coefficient, E is the activation energy, R is the 

universal gas constant (8.3145 kJ kmol-1K-1) and T is the temperature in degrees Kelvin.  

For a higher temperature in the same material an acceleration factor has been defined as [25]: 

 

 𝐹𝐻,𝐿 = 𝑒
[
−𝐸
𝑅

(
1

𝑇𝐻
−

1
𝑇𝑟𝑒𝑓

)]
 

 

(3) 

Selection of the higher temperature (𝑇𝐻) to produce a required acceleration factor relative to 

a given lower (reference) temperature depends on the value of the activation energy (E).  

Average values of 61 kJ kmol-1 for the activation energy of vinyl-ester / E-glass composite 

and 93 kJ kmol-1 for epoxy / E-glass composite  were identified previously [25].  

Figure 2 shows a plot of the acceleration factors for epoxy with the above diffusion constant 

that result from combinations of operating (reference) temperatures and accelerated ageing 

temperatures. 12°C has been chosen as the design operating (𝑇𝑟𝑒𝑓)  temperature for a tidal 

turbine operating off the coast of Ireland. The graph shows that 30°C ageing temperature 

will cause diffusion-controlled processes to proceed approximately 10 times faster than at 

12°C. Obviously, a higher temperature would give higher acceleration factors but this must 

be balanced with the tendency for higher temperatures to cause unintended degradation of 

the polymer matrix. Figure 2 also illustrates that ageing at room temperature (20°C) will 

induce an acceleration factor of approximately 3 over the 12°C operating environment. 

Substituting the diffusion value for vinyl-ester into Equation 3, shows that the ageing water 

temperature must be increased to 40°C to again give an acceleration factor of 10. Therefore 

immersing vinyl-ester glass composite in a water bath at 40°C for one year will cause 

damage equivalent to 10 years in 12°C seawater. 

Two water baths were prepared using ordinary tap water and heater / stirrer units which 

ensure that the heated water is circulated throughout the entire tank. One tank contained the 

epoxy / E-glass coupons and was maintained at 30°C ± 1°C. The other heated tank contained 

vinyl-ester / E-glass coupons and was maintained at 40°C ± 1°C. A room temperature water 

bath was also used and contained coupons of both materials. Each of the coupons was 

weighed on a mass balance and the weight recorded to a resolution of 0.001 grams before it 

was placed in the tank. The average weight of the coupons was 44 g. The coupons were 

reweighed at intervals during the immersion ageing process and before testing to establish 

the amount of water that had been absorbed during ageing. 

2.3 Stressed immersed testing 

Figure 3 shows a vinyl-ester / E-glass coupon installed in a stressed test configuration. The 

main component of this rig is a heavy duty die spring with a spring rate of 117 N/mm. The 

composite coupon is modified slightly to work with the mechanism by having an 8 mm hole 

drilled in each end. These holes are spaced at a distance that keeps the spring compressed to 

a load of 4 kN, thereby applying that load to the composite coupon. This resulted in a stress 

of 42.7 MPa and a strain of 0.21% in the QI vinyl-ester / E-glass coupons. Before each of 

the ten coupons was assembled into the stressing rig, they were fatigued in air for 10,000 

cycles between 0.8 kN and 8 kN. This load level was chosen to cause cracking in the 90° 

plies of the material in order to mimic the damage expected to occur in service [26]. Half (5) 

of the stressed coupons were immersed in 40°C water for 21 months, the other half were 

stored in insulated conditions at the same temperature as the water bath.  
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2.4 Fatigue test method 

In general, the fatigue tests were carried out with an Instron 8001 test machine and 8800 

controller, applying a sinusoidal force-time history in tension-tension mode (R = 0.1), at 

frequencies of between 3 and 6 Hz. The fatigue test frequency is chosen to ensure that the 

coupon does not overheat. The R-ratio chosen is a standard test that has a simple setup which 

facilitates installation of the immersed test setup discussed later. After the coupons had been 

immersion-aged for a number of months, sample initial tests were carried out to develop the 

test setup. At first, the wet coupons were just removed from the water and fatigue tested in 

the normal way. However it was realised that during high cycle fatigue testing (lasting a day 

or more) the coupons dry out due to the combination of internal heat generation and forced 

air cooling of the coupons. Allowing the coupons to dry out is not desirable as it has been 

shown [3] that epoxy and vinyl-ester composites recover most of their original strength when 

they are re-dried after water saturation. Two methods of keeping the samples immersed in 

water during the fatigue test, as shown in Figure 4 and Figure 5 were therefore explored. The 

first approach (Figure 4) used a clear acrylic tube which allowed the entire coupon to be 

viewed during the fatigue test. The second approach (Figure 5), using a plastic bag pouch 

sealed with waterproof tape, proved to be the more satisfactory of the two because it allowed 

the use of the standard hydraulic jaws to grip the coupons.  

Most of the fatigue testing was carried out at constant amplitude in tension-tension (R = 0.1) 

mode. However some coupons were subjected to a 2 block test regime where a first block of 

fatigue cycling between 15.5 MPa and 155 MPa was carried out for 10,000 cycles and then 

the coupons were tested to failure in a constant amplitude (R = 0.1) fatigue test to 180 MPa 

maximum stress. 

3. Results 

3.1 Water uptake during immersion ageing 

Figure 6 shows the % weight of water absorbed by the epoxy / E-glass coupons while they 

were immersed in the ageing tanks at 30°C and at room temperature. The increased diffusion 

activity stimulated by the higher temperature has enabled the coupons immersed in 30°C 

water to absorb water more quickly and become saturated at approximately 0.60% moisture. 

The coupons at room temperature absorbed water more slowly and had not become saturated 

by the end of the immersion period. Figure 7 shows a similar graph for the vinyl-ester /E-

glass coupons. In this case, the maximum moisture saturation is just slightly less than 0.2%. 

Again the lower temperature ageing takes longer to saturate. The vinyl-ester / E-CR glass 

coupons on average absorbed 0.16% of their weight in water during 21 months immersed in 

40° water. It should be noted that the % moisture absorbed by both the epoxy and vinyl-ester 

composite coupons is amongst the lowest reported in the literature . The reasons for this are 

probably twofold. Firstly, the particular polymers chosen for this work are recommended by 

their manufacturers for use in immersed applications and they have presumably been 

developed to minimise water absorption. Secondly, the laminates from which the coupons 

were taken had a low void content. A void measurement study found 0.22% void content in 

the epoxy / E-glass material and did not find any voids in a cross section of the vinyl-ester / 

E-glass material when viewed at 175X under a microscope. Figure 8 shows an optical 

micrograph of typical voids in the test coupons.  

3.2 Tensile strength of wet and dry coupons 

Figure 9 shows the results of quasi-static tensile testing of wet and dry vinyl-ester / E-glass 

and vinyl-ester / E-CR glass QI coupons. The wet coupons had been immersion aged in 40°C 
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water for up to 30 months. The dry coupons were stored at room temperature for a similar 

time before testing. The measured vinyl-ester / E-CR glass strength results have been 

adjusted to give equivalent 50% volume fraction values for comparison with the other 

materials. The results show that the E-glass and E-CR glass coupons have approximately 

equal dry strength. The results also show that both E-glass and E-CR glass fibre reinforced 

vinyl-ester composites lose 26% of their tensile strength due to the immersion ageing. 

Reports in the literature find similar (~20%) decreases in static failure strength of vinyl-ester 

/ E-glass composites after water immersion ageing [22][16].  

3.3 Fatigue test results 

Figure 10 shows the stress-life results of the fatigue testing of epoxy / E-glass QI coupons 

in tension-tension mode (R = 0.1) for both the wet and dry coupons. The number of cycles 

shown corresponds in general to complete fracture of the specimen, as shown in Figure 11. 

The dry coupons were stored at room temperature for 29 months and tested in air at room 

temperature. The wet coupons were immersed for 29 months in 30°C water and tested while 

immersed in the water pouch shown in Figure 5, at room temperature. The results show a 

significant decrease in fatigue strength for the water aged, immersed coupons compared to 

the dry coupons; for example at high stresses the wet fatigue strength is 20 to 25% lower and 

at high cycles the wet fatigue strength is 8% lower. Therefore the effect of water saturation 

on the fatigue strength of QI GFRP is stress level dependent. The actual reduction in fatigue 

life of a structure due to immersed service will therefore depend on the spectrum of fatigue 

stress cycles it experiences while in service. 

Figure 12 shows the results of fatigue tests on wet and dry coupons of vinyl-ester / E-glass 

for both the constant amplitude fatigue test at 180 MPa (maximum stress) and the 2 block 

test (10,000 cycles at 155 MPa followed by fatigue at 180 MPa). The first point of interest 

is that these results show no significant difference in constant amplitude fatigue life between 

wet and dry coupons (approximately 7 × 103 cycles for both). While this is only a single 

point on the stress-life curve it does indicate that the very low levels of moisture absorbed 

by these coupons (0.2%) has very little impact on the fatigue strength.  

The second point of interest in Figure 12 is a comparison between the single block (constant 

amplitude) tests and the two block tests. This result shows that cycling the coupons for 

10,000 cycles at 155 MPa (the first block of cycles) reduces the number of cycles to failure 

in the second block (at 180 MPa) by approximately 3.5 × 103 cycles, i.e. about half the 

average fatigue life at 180 MPa. A Miner’s rule linear cumulative damage calculation 

indicates that the first block of 10,000 cycles consumes 55% of the fatigue life (damage = 

0.55) and therefore the average Miner’s cumulative damage to failure of the coupons is 1.05. 

While the individual tests have Miner’s damage values ranging from 0.87 to 1.47 at failure, 

the average value of 1.05 gives some confidence in the use of Miner’s rule. 

3.4 Stressed ageing tests 

Water absorption levels in the stressed and immersion-aged vinyl-ester / E-glass coupons 

could not be measured while they were in the stressing rig and therefore only the final 

moisture absorption value (0.21% by weight), when they were removed from the rig, was 

determined. This value is plotted on Figure 7 for comparison with the water uptake of the 

coupons which were not stressed during immersion ageing and shows that there is no 

indication of extra water absorption due to the applied stress. Creep strain was also measured 

during this stressed coupon test by monitoring the overall length of the coupons. There was 

a small amount of creep (0.05%) in both the wet and dry coupons which underwent the same 

stressed test procedure.  
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Figure 13 shows the results of fatigue testing of coupons which had been wet or dry stress 

aged. In order to show a comparison based on the total loading experienced by the coupons, 

using Miner’s rule, the initial 10,000 cycles pre-cracking of the stress aged specimens (see 

Section 2.3) have been converted to an equivalent 3,778 cycles at 180 MPa and added to the 

cycles-to-failure result of the fatigue test after stress ageing. The results show that 

maintaining the coupons under a constant stress of 43 MPa during 21 month immersion in 

40°C water reduces the 6,000 cycles-to-failure fatigue strength of vinyl-ester / E-glass by 

approximately 10%.  

3.5 Fatigue of vinyl-ester / E-CR glass coupons 

Wet and dry vinyl-ester / E-CR glass coupons were tested in fatigue at 186 MPa (maximum 

stress), R = 0.1 and 4 Hz. The results show an average reduction in mean cycles to failure 

from 4052 to 3014 due to immersion ageing in 40°C water for 20 months. This reduction in 

life can be compared to the corresponding results for the vinyl-ester / E-glass coupons which 

showed a negligible reduction in life due to water immersion ageing when tested at 

approximately the same stress level (cf. Figure 9). 

3.6 Stiffness degradation 

Plasticisation of the matrix material due to water saturation is expected to reduce its modulus 

and thereby reduce the tensile modulus of the composite material. In addition fatigue cycling 

causes significant reduction in stiffness of QI GFRP due to inter fibre fracture and fibre 

breakage [26]. Water saturation may exacerbate these effects. A study was first carried out 

to compare the quasi-static tensile modulus of dry epoxy / E-glass coupons and the wet 

coupons which were immersion-aged in 30°C water for 29 months. Modulus values were 

calculated from the load cell and crosshead displacement data acquisition during the initial 

extension phase of the first fatigue cycle of the fatigue tests. All tests were carried out on the 

same tensile test machine with the same setup in a temperature-controlled room. The initial 

extension ramp was completed in 10 seconds and almost 1000 data points were recorded for 

each coupon during this period. A linear fit to the data between 0 and 0.05% strain was used 

to calculate the zero load extension and, following that, a linear fit to the stress strain-curve 

between 0.05% and 0.25% (per ASTM D 3030M-08) was performed, to establish the 

modulus of the material. A comparative calibration with extensometer data was carried out 

and a correction for machine stiffness was incorporated into the method. The results, shown 

in Figure 14, indicate that the average modulus of the wet coupons is only 1.1% lower than 

that of the dry coupons. Classical laminate theory analysis of a quasi-isotropic layup similar 

to the test coupons predicts that a decrease in matrix modulus of 3.5% would result in a 1.1% 

decrease in tensile modulus of the coupon.  

The left hand side of Figure 15 shows the measured evolution in quasi-static modulus of the 

composite material as the load increases during the first half of the first fatigue cycle for a 

number of wet and dry coupons at three different stress levels. The graph shows that quasi-

static modulus of the material decreases with increasing strain during the first half cycle due 

to matrix micro-cracking and minor fibre breakages. The modulus of the material is therefore 

initially a little greater than the value calculated between 0.5% and 0.25% strain using the 

ASTM standard. This degradation in modulus in the first half cycle can be significant at high 

stresses as shown here for the case where the maximum stress is 219 MPa, however, there is 

no indication of additional degradation in the water saturated coupons.  

The fatigue modulus – defined here as the slope of a line which connects the minimum stress-

strain point in a fatigue cycle with the maximum stress-strain point in the cycle - was also 

continuously monitored during the fatigue tests and the results are displayed in Figure 15 
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from cycle two onward. Note that the markers are for identification only; the lines shown 

are the continuous data. The graph shows that the overall degradation in modulus before 

failure for the dry material is similar for all stress levels at approximately 30%. The graph 

also shows that wet coupon stiffness and dry coupon stiffness decay in the same way during 

fatigue cycling. The only significant difference is that the wet coupons consistently fail at 

lower numbers of cycles. Therefore it appears that water saturation does not have any 

significant effect on the stiffness of composite materials.  

The results described above provide some confidence that GFRP materials will remain 

competitive for use in tidal turbine blade structures. While there is some degradation in the 

material fatigue strength due to water saturation it is a limited effect, particularly at high 

cycle life. Given that a 10 rpm turbine will experience at least 50 million cycles in a 20 year 

design life it is to be expected that the effect of water saturation on the fatigue life would 

mirror that at the upper end of the fatigue life curve.  

4. Conclusions 

The accelerated ageing procedure adopted in this study has simulated the immersion of 

GFRP materials in 12°C seawater for a period of 18 years by immersing coupons of the 

materials in warm water (30°C and 40°C) for approximately 2.5 years. The coupons 

absorbed relatively small amounts of water (0.2% to 0.6%) during immersion due to the 

materials chosen and fabrication procedures adopted. These materials and processes are 

therefore expected to be good candidates for use in tidal turbine blades.  

After completion of the immersion ageing procedure the “wet” material coupons were 

subjected to a number of mechanical tests and their results compared to similar tests on 

unaged “dry” specimens.  

Fatigue testing of wet epoxy / E-glass coupons found the fatigue strength of the material was 

significantly degraded by water immersion-ageing. For example for a fatigue life of 1,000 

cycles, the wet fatigue strength is 20% less than the dry fatigue strength, and for a life of 1 

million cycles the wet fatigue strength is 8% less, so that the effect is also stress level 

dependent. 

The results showed a negligible difference (1%) in quasi-static tensile modulus between wet 

and dry QI epoxy / E-glass coupons. Results also showed no difference in the evolution of 

fatigue modulus between wet and dry coupons during fatigue testing. 

Tensile strengths of wet vinyl-ester matrix coupons, with either E-glass or  E-CR glass-glass 

fibres, were found to be 25% less than equivalent dry coupons but fatigue strength near 5 x 

103 cycles to failure was either unaffected or only slightly degraded by moisture uptake. 

Tests on QI vinyl-ester / E-glass coupons which were stressed during immersion ageing 

found a 10% reduction in fatigue strength compared to similar coupons which were not 

immersed in water. 

Finally, it is hypothesised that the impairment of the mechanical properties due to prolonged 

immersion in water is due to reduction in adhesion between the fibres and the matrix.  Future 

work, including micro-scale investigations, will investigate this in more detail.  
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6. Tables 

Table 1. Materials tested and ageing procedures used. 

 

Material Vf Thickness 
Immersion 

ageing 

Stress 

Aged 

Vinyl ester/E-glass 
50% 

±2% 
3.75 mm 

40°C 

30 mths 
21 mths 

Vinyl ester/E-CR 

glass 

60% 

±2% 
4.22 mm 

40°C 

20 mths 
 

Epoxy/E-glass 
50% 

±2% 
3.75 mm 

30°C 

29 mths 
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7. Figures 

 

Figure 1 . [±45°/90°/0°]s Quasi-isotropic layup. 

 

Figure 2. Predicted acceleration factor for epoxy / E-glass composite due to ageing 

water temperature. 
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Figure 3. Stressing mechanism for stress ageing of GFRP coupon. 

 

 

Figure 4. Immersed fatigue test setup, acrylic tube with O-ring seal. 
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Figure 5. Immersed fatigue test setup, polyethylene pouch with waterproof tape. 

 

 

Figure 6. Weight of water absorbed by Epoxy / E-glass composite during water 

immersion ageing. 
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Figure 7. Weight of water absorbed by Vinyl-ester /E-glass composite during water 

immersion ageing. 

 

Figure 8. Optical micrographs of typical voids in test specimens.  
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Figure 9. Tensile strength of wet and dry vinyl-ester composite materials. 

 

 

 

 

Figure 10. Stress-life curves for wet and dry epoxy / E-glass in R = 0.1 fatigue tests. 
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Figure 11. Photographs of fractured test specimens.  

 

Figure 12. Wet and dry constant amplitude, R = 0.1, fatigue tests compared to wet 

and dry two-block fatigue tests on QI vinyl-ester / E-glass coupons. 
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Figure 13. Fatigue life of dry stress aged and wet stress aged vinyl-ester / E-glass 

coupons. 

 

 

 

Figure 14. Tensile modulus of dry and water-aged quasi-isotropic epoxy / E-glass 

coupons. 
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Figure 15 Measured modulus degradation during initial loading phase (cycles < 0.5), 

and subsequent fatigue cycling at R = 0.1 of QI epoxy / E-glass
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