81 research outputs found

    Post-Cranial Skeletons of Hypothyroid Cretins Show a Similar Anatomical Mosaic as Homo floresiensis

    Get PDF
    Human remains, some as recent as 15 thousand years, from Liang Bua (LB) on the Indonesian island of Flores have been attributed to a new species, Homo floresiensis. The definition includes a mosaic of features, some like modern humans (hence derived: genus Homo), some like modern apes and australopithecines (hence primitive: not species sapiens), and some unique (hence new species: floresiensis). Conversely, because only modern humans (H. sapiens) are known in this region in the last 40 thousand years, these individuals have also been suggested to be genetic human dwarfs. Such dwarfs resemble small humans and do not show the mosaic combination of the most complete individuals, LB1 and LB6, so this idea has been largely dismissed. We have previously shown that some features of the cranium of hypothyroid cretins are like those of LB1. Here we examine cretin postcrania to see if they show anatomical mosaics like H. floresiensis. We find that hypothyroid cretins share at least 10 postcranial features with Homo floresiensis and unaffected humans not found in apes (or australopithecines when materials permit). They share with H. floresiensis, modern apes and australopithecines at least 11 postcranial features not found in unaffected humans. They share with H. floresiensis, at least 8 features not found in apes, australopithecines or unaffected humans. Sixteen features can be rendered metrically and multivariate analyses demonstrate that H. floresiensis co-locates with cretins, both being markedly separate from humans and chimpanzees (P<0.001: from analysis of similarity (ANOSIM) over all variables, ANOSIM, global R>0.999). We therefore conclude that LB1 and LB6, at least, are, most likely, endemic cretins from a population of unaffected Homo sapiens. This is consistent with recent hypothyroid endemic cretinism throughout Indonesia, including the nearby island of Bali

    Leaf litter breakdown along an elevational gradient in Australian alpine streams

    Get PDF
    The breakdown of allochthonous organic matter, is a central step in nutrient cycling in stream ecosystems. There is concern that increased temperatures from climate change will alter the breakdown rate of organic matter, with important consequences for the ecosystem functioning of alpine streams. This study investigated the rate of leaf litter breakdown and how temperature and other factors such as microbial and invertebrate activities influenced this over elevational and temporal gradients. Dried leaves of Snow Gum (Eucalyptus pauciflora) and cotton strips were deployed in coarse (6 mm), and fine (50 mu m) mesh size bags along an 820 m elevation gradient. Loss of mass in leaf litter and cotton tensile strength per day (k per day), fungal biomass measured as ergosterol concentration, invertebrate colonization of leaf litter, and benthic organic matter (mass and composition) were determined. Both microbial and macroinvertebrate activities were equally important in leaf litter breakdown with the abundance of shredder invertebrate taxa. The overall leaf litter breakdown rate and loss of tensile strength in cotton strips (both k per day) were greater during warmer deployment periods and at lower elevations, with significant positive relationships between mean water temperature and leaf breakdown and loss of tensile strength rate, but no differences between sites, after accounting for the effects of temperature. Despite considerably lower amounts of benthic organic matter in streams above the tree line relative to those below, shredders were present in coarse mesh bags at all sites. Ergosterol concentration was greater on leaves in coarse mesh bags than in fine mesh bags, implying differences in the microbial communities. The importance of water temperatures on the rate of leaf litter breakdown suggests the potential effects of climate change-induced temperature increases on ecological processes in such streams

    Looking beneath the surface: using hydrogeology and traits to explain flow variability effects on stream macroinvertebrates

    Get PDF
    Flow variability drives important instream ecohydrological processes. Nonetheless, generalizations about ecological responses to flow variability are elusive and complicated by interacting factors. Hydrogeological controls on groundwater inputs into streams are often an overlooked factor that may interact with flow variability and influence instream ecology. Flow effects on ecology are also complicated by flora and fauna trait diversity, which makes some organisms more sensitive to flow variability than others. To improve understanding regarding the effects of flow variability on instream communities, we utilized a long-term 17-year data set of macroinvertebrate communities from eight sites on the Upper Murrumbidgee River catchment, south eastern Australia. Hydrogeological mapping provided a proxy of groundwater influence on instream ecology. Generalized linear mixed models were used to test hydrogeology (i.e. groundwater influence) and flow variability effects on selected taxa and trait groups. Trait groups tested were those with drought-resistant life stages, no drought-resistant life stages and those with poor dispersal traits. Non-drought resistant and poor dispersing taxa responded to hydrogeology and stream flow variables, while taxa with drought-resistant traits did not. Poor dispersing taxa displayed the strongest positive response to interactions between high mean flow and hydrogeological conditions that facilitate groundwater inputs. While the importance of flow variability is widely recognized, the combined role of hydrogeology and trait groups on macroinvertebrate responses has not been widely considered thus far. This study demonstrates that the consideration of hydrogeology and faunal traits can help improve the understanding of macroinvertebrate population and community responses to flow regime variability. Copyright © 2016 John Wiley & Sons, Ltd

    Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine

    Get PDF
    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems’ integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50\ua0μS/cm to 11,000\ua0μS/cm) and coalmine-induced (100\ua0μS/cm to 2400\ua0μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000\ua0μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50\ua0μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500\ua0μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny

    Similar recovery time of microbial functions from fungicide stress across biogeographical regions

    Get PDF
    Abstract Determining whether the structural and functional stress responses of communities are similar across space and time is paramount for forecasting and extrapolating the consequences of anthropogenic pressures on ecosystems and their services. Stream ecosystems are under high anthropogenic pressure; however, studies have only examined the response of stream communities across large scales over multiple generations. We studied the responses of leaf-associated microbial communities in streams within three European biogeographical regions to chemical stress in a microcosm experiment with multiple cycles of fungicide pollution and resource colonisation. Fungal community composition and the ecosystem function leaf decomposition were measured as response variables. Microbial leaf decomposition showed similar recovery times under environmental levels of fungicide exposure across regions. Initially, the decomposition declined (between 19 and 53%) under fungicide stress and recovered to control levels during the third cycle of pollution and colonisation. Although community composition and its stress response varied between regions, this suggests similar functional community adaptation towards fungicide stress over time. Genetic, epigenetic and physiological adaptations, as well as species turnover, may have contributed to community adaptation but further studies are required to determine if and to which extent these mechanisms are operating. Overall, our findings provide the first evidence of a similar functional response of microbial leaf decomposition to chemical stress across space and time

    Fish and macroinvertebrate assemblages reveal extensive degradation of the world's rivers

    Get PDF
    Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore