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Abstract  

Flow variability drives important instream ecohydrological processes. Nonetheless, 

generalisations about ecological responses to flow variability are elusive and complicated by 

interacting factors. Hydrogeological controls on groundwater inputs into streams is one often 

overlooked factor that may interact with flow variability and influence instream ecology. 

Flow effects on ecology are also complicated by flora and fauna trait diversity, which makes 

some organisms more sensitive to flow variability than others. To improve understanding 

regarding the effects of flow variability on instream communities we utilised a long-term 17 

year data set of macroinvertebrate communities from 8 sites on the Upper Murrumbidgee 

River catchment, south eastern Australia. Hydrogeological mapping provided a proxy of 

groundwater influence on instream ecology. Generalised linear mixed models were used to 

test hydrogeology (i.e. groundwater influence) and flow variability effects on selected taxa 

and trait groups. Trait groups tested were those with drought resistant life stages, no drought 

resistant life stages and those with poor dispersal traits. Non-drought resistant and poor 

dispersing taxa responded to hydrogeology and stream flow variables, while taxa with 

drought resistant traits did not. Poor dispersing taxa displayed the strongest positive response 

to interactions between high mean flow and hydrogeological conditions that facilitate 

groundwater inputs. While the importance of flow variability is widely recognised, the 

combined role of hydrogeology and trait groups on macroinvertebrate responses has not been 

widely considered thus far. This study demonstrates that the consideration of hydrogeology 

and faunal traits can help to understand macroinvertebrate population and community 

responses to flow regime variability.  

Introduction 

Variation in stream discharge spatially and temporally, or flow variability, is a key driver of 

ecological change, with particular regime characteristics critical for the persistence of some 

communities, sediment transport, biogeochemical cycles and many other physico-chemical 

and ecological processes (Poff et al., 1997; Larned et al., 2011; Stubbington et al., 2011). In 

recent decades, with increasing water abstraction, flow regulation and climate change, the 

importance of understanding flow regimes for conservation management has also become 

increasingly recognised (Belmar et al., 2013; Acreman et al., 2014). Nonetheless, while 

models for understanding flow-ecology relationships are constantly improving, it is still often 
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difficult to generalise and quantify flow regime characteristics required for the conservation 

of freshwater species, communities and habitats (Acreman et al., 2014). 

Generalising flow-ecology relationships is difficult in areas subject to high flow variability 

and especially in those areas experiencing frequent low flow periods that are triggered by 

meteorological drought (reduced precipitation). The effects of low flows on freshwater 

species can be both obvious and dramatic (e.g. Lake, 2003; Stubbington et al., 2009a; 

Stubbington et al., 2009b) or subtle and difficult to discern, as well as varying amongst 

different stream types (e.g. Wood and Petts, 1999; Suren and Jowett, 2006; Bae et al., 2014). 

For example, while some studies have demonstrated adverse low flow effects on 

macroinvertebrate communities (e.g. Thomson et al., 2012), others report minimal changes to 

abundance (e.g. Suren and Jowett 2006) or even increases in density and diversity (Wood and 

Armitage 2004).  

In some cases, the diversity of macroinvertebrate responses to flow variability may be 

attributed to interactions with other factors (Worrall et al., 2014). Recently, Booker et al., 

(2015) have argued that the importance of flow regimes may be more nuanced than 

previously thought; demonstrating that the importance of flow can be misinterpreted if 

relationships between the hydrological regime and other predictors such as upstream geology, 

upstream land cover, climate, and geomorphology are not considered. In addition, 

hydrogeology could also obscure ecological relationships with stream flow variability and 

also explain additional variation in macroinvertebrate community patterns.  

Hydrogeology influences the volume of groundwater inputs, which in turn can influence 

surface water temperatures, dissolved oxygen concentrations and water chemistry and may 

influence the macroinvertebrate community present (Stubbington et al., 2011). In the chalk 

streams of the UK, hydrogeological conditions that facilitate groundwater discharge buffered 

the impacts of meteorological drought on macroinvertebrate communities (Wood and Petts, 

1999). In contrast, within streams where groundwater abstraction has depleted aquifers, or 

where hydrogeological controls mean that groundwater inputs are limited, streams are 

unlikely to be buffered against meteorological drought and instead may become intermittent, 

triggering significant changes in the macroinvertebrate communities present (Belmar et al., 

2013). Streams or reaches influenced by groundwater are therefore likely to have greater and 

more consistent inputs of water and potentially also differ in water quality (Stubbington et al., 

2011; Wood and Petts, 1999). Despite the potential importance of hydrogeological 
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differences in determining ecological responses to flow variability, assessing and quantifying 

its importance is often limited by a lack of information over a range of low and high flow 

conditions (Monk et al., 2008). 

In addition to hydrogeology, traits (here defined as biological characteristics which may 

determine groups of macroinvertebrate responses to environmental changes) that influence 

susceptibility to flow variability could also help explain the variable macroinvertebrate 

responses recorded in previous research (Chessman, 2015; Tupinambás et al., 2015). In some 

cases faunal traits may be more responsive to changes in flow than other metrics (e.g. 

richness), and thus be more appropriate for understanding the effects of flow variability on 

in-stream fauna (Tupinambás et al., 2014). Taxa with drought resistant life stages or 

behaviours, such as refuge use or diapause/dormancy may be relatively insensitive to flow 

variability (Statzner and Bêche 2010; Bonada et al., 2007a; Bonada et al., 2007b). Along 

with taxon drought resistance, dispersal ability could also determine vulnerability to flow 

variability (Bonada et al., 2007a; Bonada et al., 2007b; de Szoeke et al., 2015). Poor 

dispersers lack the mobility to track favourable hydrological conditions, and thus in the long 

term may be restricted to hydrologically stable stream reaches (e.g. where hydrogeology 

allows groundwater inputs that buffer against precipitation driven stream flow variability). 

Developing and refining conceptual and empirical understanding of traits, as well as 

hydrogeological differences that influence groundwater inputs, could greatly increase our 

ability to predict the effects of flow regime variability on macroinvertebrates. Addressing this 

knowledge gap could also help explain some of the diverse macroinvertebrate responses to 

flow variability highlighted in previous studies (Dewson et al., 2007; Poff and Zimmerman, 

2010). 

To improve understanding regarding the effect of flow regime variability on in-stream biota, 

we investigated the response of lotic macroinvertebrates to flow regime variability and 

hydrogeology for different trait groups using a long-term (17 year) data set across four rivers 

from the Upper Murrumbidgee River catchment of south eastern Australia. Long-term data 

sets spanning greater than five years with repeat surveys across multiple rivers are relatively 

rare, but crucial for answering questions about flow variability effects on stream communities 

(Monk et al., 2008; Booker et al., 2015). The Upper Murrumbidgee also has stable (depth to 

water table ca. 5m) unpolluted and fresh groundwater (CSIRO, 2008). As a consequence, 

hydrogeological variations in the area provide a natural gradient of groundwater influences. 

The study area and dataset therefore provided an opportunity to investigate the role of 
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hydrogeological groundwater influence and trait differences for potentially explaining the 

diverse responses of macroinvertebrates to flow regime variability.   

In this study we sought to test two hypotheses: (i) hydrogeological differences that influence 

groundwater inputs, will explain variation in macroinvertebrate occurrence; and (ii) faunal 

traits will influence the response to flow regime variability; specifically in the context of this 

study taxa lacking drought resistant traits and with weak dispersal mechanisms will be more 

sensitive to flow variability and hydrogeological differences than taxa possessing drought 

resistant traits and life stages and with strong dispersal mechanisms.  

Methods 

Study area 

The Upper Murrumbidgee catchment covers 13,140 km2 in south eastern Australia (Figure 1). 

Mean annual rainfall in the area is 632.6mm (at Canberra). Mean minimum and maximum 

temperatures are 7 and 20 °C respectively (BoM, 2016). Land use and vegetation cover 

across the area varies with upland areas remaining largely forested and undisturbed, while 

lowland areas have been cleared and utilised for agricultural and urban development. The 

streams surveyed in this study were all located in the upland zones in relatively natural areas 

that have experienced little disturbance or locations designated for conservation (Figure 1). 

The streams surveyed were of stream order 3, 4 and 5 (Strahler 1952). Mean discharge also 

varied across rivers during the survey period (Goodradigbee (216 ML day-1), Paddys (36 ML 

day-1), Cotter (42 ML day-1) and Queanbeyan (70 ML day-1)).  

The hydrogeology of the area is diverse with local and intermediate groundwater flow 

systems of fractured rock aquifers, aeolian sands, colluvial fans, fractured basalts and upland 

alluvium (see Appendix A). Groundwater levels are stable, shallow, fresh and connected to 

rivers throughout the catchment, with limited groundwater abstraction that is well below 

recharge capacity (1 GL yr -1) (CSIRO, 2008). As a consequence, any hydrogeological 

variations in the area provide a gradient of surface-groundwater connectivity and thus 

groundwater influence on stream segments. There was no significant salinisation upstream of 

the sites sampled.  

Macroinvertebrate surveys 
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Data was utilised from macroinvertebrate surveys undertaken from 1994 to 2011 in stream 

riffle habitats of the Upper Murrumbidgee. Riffles were defined as habitat with flowing 

broken water over gravels, pebbles, cobbles or boulders and deeper than 10cm (Nichols et al., 

2000). Riffle habitats were surveyed with hand nets (250 µm mesh) using standardised ACT 

Australian River Assessment System (AUSRIVAS) methods (Nichols et al., 2000). Briefly, 

this involved the operator sampling macroinvertebrates facing downstream with the net in 

front of their feet on the substratum while disturbing and dislodging the substratum by 

kicking and twisting the feet to a depth of approximately 10cm (Nichols et al., 2000). 

Macroinvertebrates collected were preserved using 70% ethanol and then in the laboratory 

samples were rinsed and placed in a sub-sampling box comprising 100 cells (Marchant, 1989) 

and agitated until evenly distributed. From each sample a subsample of 200 individual 

macroinvertebrates was randomly selected and identified to family, except for aquatic worms 

(Oligochaeta) and mites (Acarina), which were identified to class (Nichols et al., 2000). We 

were restricted the use of family level data, which is routinely used in biomonitoring 

programmes, as species level data was not available due to taxonomic constraints (e.g., lack 

of species level keys for some groups in the region and the presence of cryptic species which 

could not be identified based on morphology alone). 

In total 189 samples from 8 riffle habitat sites were collected from the Upper Murrumbidgee 

catchment. Each site had a minimum of 10 samples collected across multiple dry and wet 

years to ensure a spread of surveys across both low and high flow periods (Appendix B and 

Appendix C). Over the survey period many months and years were below and above long-

term mean rainfall (1960-1990 climatological mean), with anomalies of around -50 to + 150 

mm (monthly) and -100 to + 450 mm (yearly) being recorded (Figure 2, Appendix B). 

Quantifying hydrogeological and groundwater influence  

The influence of hydrogeology was assessed at each site using data layers of groundwater 

flow systems (ABARES, 2000) underlying the upstream river segments of each site. The 

hydrogeological influence index (HG index) was calculated as in Eq. 1 (Figure 3 represents 

the method graphically). For each site the HG index is based on hydrogeological 

characteristics and was calculated using a spatial approach similar to those used to measure 

landscape connectivity (Wiens, 2002).  

HG index = log (∑ sli / log (di))  (Eq. 1) 
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Where sl is the length of the hydrogeological segment likely to facilitate groundwater 

movement (i.e. alluvial and colluvial segments, after Coram’s et al. 2000 hydrogeological 

classifications) and d is the distance downstream from that segment to the site (Figure 3). The 

HG index thus reflects the porosity of a hydrogeological substrate and in turn the likely 

groundwater influence at a site. In areas where the hydrogeological substrate is highly 

permeable groundwater moves more easily into the stream (Hiscock and Bense, 2014).  The 

HG index also gives a proxy measure of groundwater influence that can be compared 

between sites by incorporating the distance upstream from each study site to the location of 

the hydrogeological unit facilitating groundwater movement and the size of that 

hydrogeological segment (i.e. the closer to the site and the larger the hydrogeological 

segment that allows groundwater flows the greater the expected influence of groundwater at 

that site). Further details on the HG index are given in Appendix A.  

Upstream of each site the HG index was calculated at distances of  0.5, 1, 1.5, 2, 2.5 and 5 

km. River segments flowing into each site were also assessed at 100m either side of the river 

channel, to account for lateral groundwater flows from the parafluvial zone (Boulton and 

Hancock 2006). The HG index varied across the sites surveyed; 2 sites had high groundwater 

influence (HG index of 3.24 to 3.33 at 2 km upstream); 3 sites had moderate groundwater 

influence (HG index of 2.11 to 2.63 2 km upstream) and 3 sites had low groundwater 

influence (HG index of 0 to 1.9 at 2 km upstream). Correlations of the HG index with 

longitudinal effects (i.e. the distance (km) between the stream source and the site (after 

Nichols et al., 2000)) that could obscure the HG index were low (r ≤ 0.3).  

Trait groups 

We derived trait groups on the basis of dispersal ability and the presence/absence of life-

history stages resistant to drying. The trait group categories applied were taxa with (1) 

drought resistant life-stages (hereafter drought resistant) (2) no drought resistant life stages 

(here after non-drought-resistant) and (3) poor dispersal traits (here after poor dispersing 

taxa). Taxa were assigned to each of these trait groups based on the literature as listed in 

Appendix D. Drought resistant taxa include those that have eggs resistant to desiccation, 

larvae or adults resistant to some desiccation, the ability to use refuges in moist sediments, 

under leaves or other organic debris, or can utilise temporary aquatic habitats. Non-drought 

resistant taxa were those with no drought / desiccation resistant traits. Poor dispersing taxa 

include weak or poor flyers, or those that do not fly far from where they breed. A range of 
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life cycle lengths (i.e. number of generations per year classed as less univoltine, univoltine to 

bivoltine and more than bivoltine) were present in each trait group. The frequency of 

different life cycle length classes did not vary significantly within trait groups (χ2 < 3.7; P > 

0.16; df =2) (Appendix E).  

Data analysis 

Generalised linear models (GLMMs) are models that extend linear mixed models (which 

include random effects) to non-normal data types such as counts or binary data, which widely 

occurs in ecological studies (Bolker et al., 2009). GLMMs were used to test the relative 

importance of hydrogeological interactions with stream flow, and how these varied amongst 

taxa and trait groups. All macroinvertebrate taxa which occurred in > 10 % of surveys across 

all sites were modelled using GLMMs. A summary of the taxa modelled, as well as taxa 

within each trait group, are given in Appendix D and F. A separate model for each taxon and 

trait group was fitted using a logit link. For each model there were 189 samples. Within each 

of the 189 samples each taxon occurred a certain number of times out of the total 200 

individuals collected. From this we modelled the probability that each taxon or trait group 

was present in a sample using a binomial distribution.  

To allow for overdispersion a random effect with a unique value for each sample (from 1 to 

189) was included (Table I). This allowed each sample to deviate from the modelled binomial 

distribution (Del Fava et al., 2014). To allow for spatial and temporal clustering in the data 

random effects for site and year were also included (Table I).  Fixed effects were season of 

sampling (spring, summer, autumn or winter), flow variability metrics were represented by 

log transformed mean flows in the preceding 6 months (flow 6 months), the co-efficient of 

variation of the previous months flows (CV month) and the co-efficient of variation of flows 

for the previous 6 months (CV 6 months) (Table I). CV 3 months and CV 1 year were not 

included in the final model as they were strongly correlated (spearman r ≥ 0.66) with CV 6 

months (Appendix G). The hydrogeological influence index (HG index) was included as a 

fixed effect at 2km upstream because this distance displayed the strongest relationship in 

preliminary analysis and because this measure was strongly correlated (r ≥ 0.74) with HG 

index measures at each of the different distances measured. Interactions between the 

hydrogeological index and flow metrics were also included as fixed effects. To minimise the 

likelihood of finding relationships by chance we took a conservative approach to fitting fixed 

effects and only included those important for testing flow variability and hydrogeological 
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relationships with macroinvertebrate responses. To this end we also calculated 95% 

confidence intervals for parameter estimates in each model using bootstrapping with 1000 

replicates. 

Prior to analysis, predictor variables were centred (x-mean(x) / 2.sd(x)), to allow comparison 

of effect sizes (Gelman and Hill, 2006). Centring also allows for regression results to be more 

easily interpreted when interactions are in a model, with main effects being the predictive 

difference with the other inputs at their average value (Gelman and Hill, 2006). A conditional 

and marginal R2 for each model was also computed (after Nakagawa and Schielzith, 2013) 

using the MuMIn package (Bartoń, 2013) in R. Model checking included homogeneity of 

residual variance and normality and checking for overdispersion. All GLMMs were fit using 

the lme4 package (Bates et al., 2012) and languageR package (Baayen, 2011) in R (R 

Development Core Team 2014). 

Results 

Taxon and trait group responses to groundwater influence and stream flow   

The occurrence of several taxa were explained well by GLMMs, with a conditional R2 ≥ 0.4 

(Table II). There was a diverse range of macroinvertebrate responses to the hydrogeological 

index proxy for groundwater influence (HG index) and flow variables tested (Table II) 

(Figure 4 and 5). Chironomidae and Hydrobiosidae were the only taxon positively associated 

with the HG index, albeit the explained variance for the Chironomidae model was low 

(marginal R2 = 0.02) (Table II). In contrast, the occurrence of Coloburiscidae and 

Gripopterygidae was negatively associated with the HG index (Table II). The occurrence of 

Baetidae, Coloburiscidae, Glossosomatidae, Gomphidae, Gripopterygidae, Hydrobiosidae 

and Tipulidae was positively related to flow in the previous 6 months; of these 

macroinvertebrates, Glossosomatidae, Coloburiscidae and Baetidae had the strongest positive 

association with flow (Table II) (Figure 4). In contrast, an increased discharge had a negative 

association with Acarina, Ecnomidae and Oligochaeta (Table II) (Figure 4).  

Ecnomidae, Empididae and Simuliidae had a positive association with CV 6 months (Figure 

5). Ancylidae, Coloburiscidae, Leptophlebiidae, Elmidae, Glossosomatidae, Gripopterygidae 

and Gomphidae all responded negatively to CV 6 months (Table II). Elmidae was the only 

taxon with a relationship with CV 1 month (Table II). Baetidae, Hydrobiosidae and 

Hydroptilidae all responded negatively to interactions between the HG index and flow in the 
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previous 6 months, while Coloburiscidae and Gripopterygidae responded positively (Table 

II). Baetidae and Simuliidae responded positively to interactions between the HG index and 

CV 6 months (Table II). No taxa responded to interactions between the HG index and CV 1 

month.  

Non-drought resistant taxa had a positive relationship with the HG index variable, but no 

relationship with any of the flow variables (Table II). Drought resistant taxa had no 

relationship with either the HG index or any of the flow variables considered (Table II).  

Overall, poor dispersing taxa showed a positive response to interactions between the HG 

index and flow 6 months (Table II; Figure 6). More specifically, at mean flows or higher, as 

the HG index increased, the probability of occurrence of poor dispersing taxa also increased 

(Figure 4). In contrast, at low flows, as the HG index increased, the probability of occurrence 

of poor dispersing taxa decreased (Figure 4). Poor dispersing taxa also showed a negative 

relationship with the main effects of the HG index and CV 6 months. The negative 

relationship between poor dispersing taxa and the HG index and CV 6 months reflect the 

effects of these factors on poor dispersing taxa when other predictors in the model are at their 

average value.  

Discussion  

Ecological responses to flow regime variability are often diverse, with some biota showing 

significant changes in some instances, but little response in others (Stubbington et al., 2009a; 

Stubbington et al., 2009b; Wood and Petts, 1999; Suren and Jowett, 2006; Bae et al., 2014). 

Understanding the reasons behind the diversity of ecological responses to flow variability is 

central to developing generalities that can guide research and management. To this end, we 

investigated whether hydrogeology and traits explain variation in macroinvertebrate 

responses to flow and thus whether these factors may help explain the diversity of ecological 

responses to flow variability documented in other studies.  

Hydrogeological influences and macroinvertebrate responses to flow variability  

This study suggests that stream macroinvertebrate responses to flow variability could be 

better understood by some measure of hydrogeology related to groundwater influence. The 

hydrogeological diversity of the Upper Murrumbidgee Catchment is not unique and similarly 

complex hydrogeological structures, and thus fine scale diversity in surface-groundwater 

connectivity are a common feature of rivers globally (BGR Hannover / UNESCO, 2012). The 
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HG index in this study reflects the porosity and permeability of a hydrogeological substrate. 

In areas where the hydrogeological substrate is highly permeable groundwater moves more 

easily into the stream (Hiscock and Bense, 2014). In turn, stream segments with highly 

permeable aquifers (e.g. alluvial segments) that allow greater groundwater influence may 

interact more strongly with flow variability to influence patterns in macroinvertebrate 

occurrence (e.g. Monk et al., 2008).   

We hypothesised that hydrogeological differences (reflecting groundwater influence) would 

explain variation in macroinvertebrate occurrences. The results were in agreement with this 

hypothesis for 7 out of the 24 taxa modelled. The seven taxa that the hypothesis was accepted 

for had a significant relationship with the influence of groundwater (HG index), or 

interactions between the HG index and flow variables. This suggests that not only do 

macroinvertebrate families within a community show a diverse range of responses to flow 

variability, but also that hydrogeological patterns that influence groundwater affect the 

occurrence of many macroinvertebrate families. This result is broadly consistent with others 

studies that highlight diverse responses between different taxa to flow variability and the 

importance of environmental factors additional to stream flow (Poff and Zimmerman, 2010; 

Booker et al., 2015).  

More specifically, the results for individual macroinvertebrate families showing significant 

responses to hydrogeological differences are also consistent with other studies (Corbin and 

Goonan, 2010; Bovill et al., 2013). For example, Baetidae, Hydroptilidae and Hydrobiosidae 

responded negatively to interactions between the HG index and flow, reflecting a preference 

for minimal groundwater influence and lower flows and thus potentially for drier conditions. 

We know of no previous studies investigating groundwater influence on Baetidae, 

Hydroptilidae and Hydrobiosidae occurrence, but a preference for drier conditions is 

consistent with observations for several species within these families (Wells, 1985; Corbin 

and Goonan, 2010; Bovill et al., 2013). A preference for drier conditions also fits well with 

some, but not all, known traits of Baetidae, which has some drought resistant life stages and 

desiccation-resistant eggs (Paltridge et al., 1997).  Hydroptilidae are also widespread, tolerant 

and commonly found in slow-flowing waters (Wells, 1985).  

In contrast to the above taxa, Coloburiscidae and Gripopterygidae responded positively to 

interactions between the HG index and river flow (i.e. as the HG index increased, the 

influence of river flows became more positive). This could reflect a preference for 
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hydrogeological conditions that facilitate greater groundwater influence, and thus relatively 

more consistent inputs of water (Wood and Petts, 1999; Stubbington et al., 2011; Wood and 

Petts, 1999). Coloburiscidae typically inhabit fast flowing waters (Gooderham and Tsyrlin, 

2002), whereas Gripopterygidae are typically poor dispersers (Keast, 1981; Walker, 1981; 

Lancaster and Downes, 2013). A preference for fast flows and poor dispersal abilities may 

make both Coloburiscidae and Gripopterygidae sensitive to local surface flow fluctuations 

and hydrogeological differences. Consequently, additional to factors such as surface flows, 

fine scale (≤ 2km) spatial variations in hydrogeology, which influence groundwater inputs, 

may be important factors for several of the macroinvertebrate taxa investigated. 

The models including the HG index’s relationship, while significant for some taxa, had little 

explanatory power for others. In these weaker models significant relationships with the HG 

index are unlikely to be biologically relevant (e.g. Chironomidae). Furthermore the 

relationships observed in this study need to be considered alongside the limited taxonomic 

resolution used (Monk et al., 2012). A limited taxonomic resolution may obscure variation 

between species within families (Chessman, 2015). Chironomidae and Baetidae, which 

responded to the HG index and HG index interactions with flow are globally widespread and 

occur in a diversity of habitats (Ferrington, 2008; Gattolliat and Nieto, 2009). Consequently, 

species-specific differences in these and many of the groups investigated need to be carefully 

considered when interpreting the results at the broad family level presented here. An 

important avenue for future research will be testing how species-specific differences within 

families may alter identified relationships with hydrogeology and flow variability.   

Using traits to understand macroinvertebrate responses to flow variability   

As hypothesised, non-drought resistant and poor dispersing taxa were significantly influenced 

by the HG index and flow variables, whereas taxa with drought resistant traits were not. Of 

the trait groups examined, poor dispersing taxa showed the strongest response, with a 

significant positive association with interactions between the HG index and flow. Poor 

dispersing taxa did show a negative relationship with the HG index, but this relationship is 

not the main effect of the HG index by itself, since its influence is conditional on other 

factors at their average value (Gelman and Hill, 2006). The highest predicted probability of 

occurrence for poor dispersing taxa was in conditions with a relatively greater HG index (i.e. 

greater relative groundwater influence) and high flow. This result suggests that over the long-

term poor dispersing taxa may prefer areas with greater groundwater influence and higher 
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flows, possibly because this increases hydrological stability and thus minimises the need for 

dispersal.  

The importance of flow variability, or its inverse hydrological stability, coupled with taxon 

dispersal capability, is known to be a key determinant driving the occurrence of 

macroinvertebrates (e.g. Bonada et al., 2007b; Stubbington et al., 2011; Belmar et al., 2013; 

de Szoeke et al., 2015). However, while the importance of flow variability is well recognised, 

it has less frequently been linked to trait groups, such as macroinvertebrate families with poor 

dispersal abilities (but see Bonada et al., 2007b; Tupinambás et al., 2014). Although, Bonada 

et al. (2007b) have shown significant differences between taxa with different dispersal traits 

to varying levels of flow intermittency and these results are broadly consistent with the 

findings of the current study. Belmar et al. (2013) also argue that dispersal ability is a key 

determinant of macroinvertebrates in hydrologically variable habitats. The findings of this 

study also support these assertions and highlight that macroinvertebrates with poor dispersal 

abilities are more likely to occur in hydrologically stable conditions (here represented by high 

flow and hydrogeological conditions that reflect high groundwater influence).  

While the current study’s findings do have some similarities with previous research, 

comparisons between studies on macroinvertebrate dispersal and flow variability need to be 

made cautiously. In the case of Bonada et al. (2007b) and Belmar et al. (2013) 

macroinvertebrate responses were to seasonal drought, while in the current study 

macroinvertebrates responded to supra-seasonal droughts. There were also ephemeral habitats 

in the study of Bonada et al. (2007b), but not in the current study. Furthermore, there are 

differences in the taxa present and how trait groups were classified. Additionally, fine-scale 

differences in hydrogeology and interactions with flow were not assessed in Bonada et al. 

(2007b) or Belmar et al. (2013).  

Future directions and implications  

While, the HG index in this study was a useful predictor for several macroinvertebrate taxa 

and poor dispersing taxa, we stress that our HG index is not directly linked to groundwater 

inflows, but instead is a proxy for them. Numerous studies have highlighted fine scale and 

resource intensive methods for assessing hydrogeology and surface-groundwater connectivity 

(e.g. Baskaran et al., 2009; Lamontagne et al., 2014). For example, tracer, isotope or 

geochemical techniques have been frequently used to measure groundwater connectivity to 

streams (Atkinson et al. 2015). Ground testing of hydrogeological proxies using fine scale 
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surface-groundwater hydrogeological techniques will be an important avenue for future 

research and could foster important collaboration between hydrogeologists and 

ecohydrologists.  

Though an important future research direction, detailed surface-groundwater interaction 

information and studies may not be available for long-term studies or for historical ecological 

data sets at broader spatial scales (e.g. entire rivers or across multiple rivers within or 

between catchments). In this instance, proxies for groundwater influence on stream segments, 

such as the HG index, offer an alternative to resource intensive investigations and could be an 

essential first step for ecohydrological research where different resolutions and scales of 

ecological and hydrogeological data need to be linked.  

In addition to utilising a novel index of hydrogeology reflecting groundwater influence, this 

study also demonstrated the use of different trait groups for understanding flow variability 

effects on macroinvertebrates. The use of trait groups offers important insights into the 

mechanisms behind macroinvertebrate responses to flow variability. In this study, the 

positive response to the interaction between the HG index and high flow on poor dispersing 

taxa suggests these taxa display an affinity for hydrologically stable areas. This finding, not 

only helps to explain why in some instances there may be diverse macroinvertebrate 

responses to flow variability (Dewson et al., 2007), but also highlights important avenues of 

future research for developing and refining our conceptual and empirical understanding of 

ecohydrological responses to flow variability.  
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Tables and Figures  

Table I Summary of fixed and random effects in GLMM models 

Table II Parameter estimates and model performance for taxa and trait groups in riffle 
habitats. Marginal R2 (R2 GLMM(m) ) gives the variance explained by fixed factors. Conditional 
R2 (R2 

GLMM(c)) is the variation explained by the entire model (after Nakagawa and Schielzith 
2013). b [95% CI] = parameter estimate and bootstrapped 95% confidence interval. Only taxa 
with significant relationships are shown. Interactions between the Groundwater index and CV 
1 month were not significant for any taxa and are not shown.  

Figure 1 The Upper Murrumbidgee study area in south eastern Australia, showing river riffle 
(black circle) macroinvertebrate survey locations. The major city (Canberra) and location of 
long-term rainfall gauge (Tharwa) are shown by black squares.  

Figure 2 Monthly rainfall anomalies over the survey period from 1994 to 2011 at Tharwa.  

Figure 3 Graphical representation of method used to calculate the Groundwater influence 
index. The size of hydrogeological segments ‘likely to be of groundwater influence’ (e.g. 
alluvial segments) (after Coram et al. 2000) = sl and the distance of that segment from the 
site = d. Segment length (sl) and distance (d) were all measured in ArcMap 9.3 using the 
measure tools. 

Figure 4. Macroinvertbrate family responses to log Flow 6 month (ML day-1) (mean in 
previous 6 months). Grey shaded areas are 95% confidence intervals. Ticks on x-axis show 
spread of data. Note different ranges on y-axis. 

Figure 5.  Macroinvertebrate family responses to CV 6 month (CV 6) (mean in previous 6 
months). Grey shaded areas are 95% confidence intervals. Ticks on x-axis show spread of 
data. Note different ranges on y-axis. 

Figure 6 Predicted probability of occurrence of Poor dispersing taxa in response to 
interactions between the hydrogeological influence index and log flow (mean in the previous 
6 months).  

Appendices  

Appendix A Hydrogeological subunits in the study area and further detail and references and 
groundwater influence index method.  

Appendix B (a) Monthly and (b) yearly rainfall anomalies over the survey period from 1994 
to 2011.  

Appendix C Sample time (black square) for all riffle sites in relation to flow percentile (grey 
line) for the corresponding river.  

Appendix D Taxa list for each trait group. Families within each trait group have life stages 
that are characterised by the traits heading their respective column.   
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Appendix E Number of generations per year (in different classes), shown as a proportion, for 
each trait group examined. 

Appendix F Taxa occurring in >10% of samples and trait groups modelled in GLMMs.  

Appendix G Predictor fixed and random effects correlations (Spearman r) for GLMM 
models for frequently occurring taxa and trait groups  
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Table I Summary of fixed and random effects in GLMM models 

Variable  Description Data source 
Random effects   
Site location  To account for spatial 

clustering. 
Field data 

Sample Included to account for 
over-dispersion.  

Field data 

Year To account for temporal 
clustering. 

Field data 

Fixed effects   
Season Season of 

macroinvertebrate 
sampling, to account of 
seasonal differences. 

Field data 

log Flow 6 month (ML 
day-1) (mean in previous 
6 months) 

Mean flow six months 
before the sampling date.  
(i.e. antecedent flow 
conditions). 

Australian Capital Territory Electricity 
and Water Authority (ACTEW) and the 
Office of Water from the NSW 
Department of Primary Industries (2013)  
 

CV month (CV) (mean in 
previous month) 

Coefficient of variation 
(representing flow 
variability) for daily flow 
data a month before the 
sampling date 

Australian Capital Territory Electricity 
and Water Authority (ACTEW) and the 
Office of Water from the NSW 
Department of Primary Industries (2013)  
 

CV 6 month (CV 6) 
(mean in previous 6 
months) 

Coefficient of variation 
(representing flow 
variability) for daily flow 
data 6 months before the 
sampling date.  

Australian Capital Territory Electricity 
and Water Authority (ACTEW) and the 
Office of Water from the NSW 
Department of Primary Industries (2013)  

Hydrogeology influence 
(HG index) 

Index reflecting amount of 
groundwater influence at 
site. See Figure 3 and 
Appendix A for further 
details.  

Department of Agriculture: Australian 
Bureau of Agricultural and Resource 
Economics and Sciences Manager 
(ABARES) (2000) Australian 
groundwater flow systems – National land 
and water resources 
audit. http://data.daff.gov.au/anrdl/metada
ta_files/pa_agfs_r9abl_00111a00.xml  
 

 

http://data.daff.gov.au/anrdl/metadata_files/pa_agfs_r9abl_00111a00.xml
http://data.daff.gov.au/anrdl/metadata_files/pa_agfs_r9abl_00111a00.xml
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Table II Parameter estimates and model performance for selected taxa and trait groups in riffle habitats. Marginal R2 (R2 GLMM(m) ) gives the variance 
explained by fixed factors. Conditional R2 (R2 

GLMM(c)) is the variation explained by the entire model (after Nakagawa and Schielzith 2013). b [95% CI] = 
parameter estimate and bootstrapped 95% confidence interval. Only taxa with significant relationships are shown. Interactions between the Groundwater 
index and CV 1 month were not significant for any taxa and are not shown.  

Taxon  
HG index  Flow  CV 1 month  CV 6 month  HG x Flow  HG x CV 6 month  R2 

GLMM(m) 
R2 

GLMM(c) 
b [95% CI] b [95% CI] b [95% CI] b [95% CI] b [95% CI] b [95% CI] 

Acarina n.s.  -0.34 [-0.6, -0.11] n.s.  n.s.  n.s.  n.s.  0.05 0.24 

Ancylidae n.s.  n.s.  n.s.  -1.81 [-3.38, -0.82] n.s.  n.s.  0.12 0.46 

Baetidae n.s.  0.77 [0.41, 1.16] n.s.  n.s.  -0.45 [-0.69, -0.22] 0.34 [0.1, 0.59] 0.16 0.46 

Chironomidae 0.33 [0.14, 0.54] n.s.  n.s.  n.s.  n.s.  n.s.  0.02 0.15 

Coloburiscidae -0.90 [-1.68, -0.19] 0.84 [0.57, 1.24] n.s.  -0.96 [-2.19, -0.59] 0.26 [0.04, 0.49] n.s.  0.45 0.59 

Conoesucidae n.s.  0.68 [0.05, 1.35] n.s.  n.s.  n.s.  n.s.  0.12 0.57 

Ecnomidae n.s.  -0.57 [-0.96, -0.17] n.s.  0.64 [0.12, 1.06] n.s.  n.s.  0.16 0.51 

Elmidae n.s.  n.s.  0.69 [0.05, 1.23] -0.54 [-1.31, -0.17] n.s.  n.s.  0.12 0.40 

Empididae n.s.  n.s.  n.s.  0.39 [0.05, 0.64] n.s.  n.s.  0.04 0.18 

Glossosomatidae n.s.  0.9 [0.48, 1.41] n.s.  -0.76 [-1.95, -0.29] n.s.  n.s.  0.36 0.61 

Gomphidae n.s.  0.5 [0.03, 1.1] n.s.  -1.22 [-3.13, -0.56] n.s.  n.s.  0.28 0.58 

Gripopterygidae -0.53 [-0.96, -0.09] 0.42 [0.15, 0.75] n.s.  -1.55 [-2.54, -0.95] 0.24 [0.06, 0.41] n.s.  0.43 0.69 

Hydrobiosidae 0.52 [0.02, 1.28] 0.56 [0.21, 0.99] n.s.  n.s.  -0.31 [-0.54, -0.1] 0.18 [0, 0.41] 0.26 0.52 

Hydroptilidae n.s.  n.s.  n.s.  n.s.  -0.24 [-0.44, -0.05] n.s.  0.13 0.47 

Leptophlebiidae n.s.  n.s.  n.s.  -0.36 [-0.85, -0.01] n.s.  n.s.  0.10 0.51 

Oligochaeta n.s.  -0.29 [-0.55, -0.07] n.s.  n.s.  n.s.  n.s.  0.16 0.36 

Simuliidae n.s.  n.s.  n.s.  0.51 [0.17, 0.91] n.s.  0.25 [0.03, 0.46] 0.11 0.45 

Tipulidae n.s.  0.43 [0.18, 0.75] n.s.  n.s.  n.s.  n.s.  0.10 0.21 

Trait group         
Drought resistant n.s.  n.s.  n.s.  n.s.  n.s.  n.s.  0.02 0.14 

Non-drought resistant 0.2 [0.03, 0.37] n.s.  n.s.  n.s.  n.s.  n.s.  0.02 0.15 

Poor dispersing -0.87 [-1.27, -0.44] n.s.  n.s.  -0.96 [-1.65, -0.51] 0.39 [0.22, 0.56] n.s.  0.31 0.61 

n.s. = bootstrapped 95% confidence intervals overlapping zero. Residual degrees of freedom = 175 
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Figure 1 The Upper Murrumbidgee study area in south eastern Australia, showing river riffle (black 
circle) macroinvertebrate survey locations. The major city (Canberra) and location of long-term 
rainfall gauge (Tharwa) are shown by black squares.  
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Figure 2 Monthly rainfall anomalies over the survey period from 1994 to 2011 at Tharwa.  
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Figure 3 Graphical representation of method used to calculate the Groundwater influence index. The 
size of hydrogeological segments ‘likely to be of groundwater influence’ (e.g. alluvial and colluvial 
segments) (after Coram et al. 2000) = sl and the distance of that segment from the site = d. Segment 
length (sl) and distance (d) were all measured in ArcMap 9.3 using the measure tools. 
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Figure 4. Macroinvertbrate family responses to log Flow 6 month (ML day-1) (mean in previous 6 months). Grey shaded areas are 95% 
confidence intervals. Note different ranges on y-axis.  
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Figure 5. Macroinvertbrate family responses to mean coefficient of variation of flow in previous 6 months. Grey shaded areas are 95% 
confidence intervals. Note different ranges on y-axis
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Figure 6 Predicted probability of occurrence of Poor dispersing taxa in response to interactions 
between the hydrogeological influence index and log flow (mean in the previous 6 months). 
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Appendices  

Appendix A: Hydrogeological subunits in the study area and further detail and references 
and groundwater influence index method 

Hydrogeological subunits in the study area are shown in the figure below. Riffle (black 

circle) macroinvertebrate survey locations are also shown. The major city (Canberra) and 

location of long-term rainfall gauge (Tharwa) are shown by black squares. The groundwater 

connectivity of segments was classified based on aquifer transmissivity (i.e. the ability to 

transmit groundwater through the aquifer) as either facilitating groundwater movement or not 

based on the classification of Coram et al. (2001). Alluvial and Colluvial groundwater flow 

segments were classified as facilitating high groundwater movement. Fractured rock 

segments were classified as having lower hydraulic conductivity and facilitating groundwater 

movement less readily. This approach was designed to capture broad surface-groundwater 

connectivity differences where information is limited. An assessment of temporal dynamics 

in groundwater connectivity was also not attempted because of the stable groundwater 

conditions in the study area (CSIRO 2008).  
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Coram, J.E., Dyson, P.R. & Evans, W.R. (2001) An Evaluation Framework for Dryland 

Salinity, A report prepared for the National Land and Water Resources Audit Dryland 

Salinity Project, Bureau of Rural Sciences, Canberra. 

CSIRO (2008). Water availability in the Murrumbidgee. A report to the Australian 
Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, 
Australia. 155pp 

 

Appendix B: Annual rainfall anomalies over the survey period from 1994 to 2011 at Tharwa.  
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Appendix C: Sample time (black square) for all riffle sites in relation to flow percentiles 
(grey line) on the Cotter River, which is generally representative of flow conditions in other 
rivers in the catchment.  
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Appendix D: Taxa list for each trait group. Families within the drought resistant group have 
a life stage or stages that are characterised by being resistant of drought, while the non-
drought and poor dispersal groups all life-stages are characterised by the traits heading their 
respective column.  Number in parenthesis correspond to references and page number listed 
below (e.g. 6:1209 = page 1209 of reference 6). 

Non drought resistant Drought resistant  Poor dispersers 

Corixidae (6:1209) Aeshnidae (6:1152) Austroperlidae (15:191; 
6:1171) 

Gerridae (6:1209) Baetidae (9) Corbiculidae (6:1243) 
Hebridae (6:1209) Ceratopogonidae (9) Eustheniidae (15:191; 6:1171) 

Mesoveliidae (6:1209) Corbiculidae (15:83) Gripopterygidae (15:191; 
6:1171) 

Naucoridae (6:1209) Culicidae (3:732) Notonectidae (15:191; 6:1171) 
Nepidae (6:1209) Dytiscidae (14:4) Sphaeriidae (6:1243) 
Ameletopsidae (5:63) Gelastocoridae (6:1209) 

 Austroperlidae (2) Glacidorbidae (15:88) 
 Caenidae (5:63) Gripopterygidae (13:78) 
 Chironomidae (7) Hydrobiidae (15:88) 
 Coloburiscidae (5:63) Hydrometridae (1:31) 
 Eustheniidae (2) Leptoceridae (11; 12) 
 Palaemonidae (15:166) Leptophlebiidae (9) 
 Pleidae (6:1209) Lestidae (6:1152) 
 Veliidae (6:1209) Libellulidae (4)  
 

 
Lymnaeidae (15:88) 

 
 Nematoda (15:55) 

 
 Notonectidae (15:224) 

 
 Notonemouridae (6:1180) 

 
 Oligochaeta (9) 

 
 Parastacidae (8:122; 15:168; 6:1122) 

 
 Phreatoicidae (15:155)  

 
 Physidae (15:88) 

 
 Planorbidae (15:88) 

 
 Psephenidae (10) 

 
 Simuliidae (15:238) 

 
 Sphaeriidae (15:83) 

 
 Synthemistidae (6:1152; 11) 

 
 Telephlebiidae (14:11) 

   Tipulidae (9)   
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References for trait groups in Appendix D. Reference numbers correspond to those in 
Appendix D 

1. Andersen, N.M. & Weir, T.A. (2004): Australian water bugs. Stenstrup: Apollo books. 
 
2. Gooderham J. & Tsyrlin E. (2002) The Waterbug book: A Guide to the Freshwater 

Macroinvertebrates of Temperate Australia. CSIRO, Collingwood, Australia.  
 
3. Hinton, H.E. (1981): Biology of insect eggs. Oxford: Pergamon press. 
 
4. Identification and Ecology of Australian Freshwater Invertebrates 

(http://www.mdfrc.org.au/bugguide/index.htm, accessed March-October 2014)   
 

5. Ingram, B.A., Hawking, J.H. & Shiel, R.J. (1997): Aquatic life in freshwater ponds. 
Albury: CRCFE 

6. Keast, A. (1981) ed.: Ecological biogeography of Australia. Volume 2. Dr. Junk : Boston 
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(Diptera, Chironomidae). Aquatic Insects 10: 205-214. Ed. CSIRO. 2  
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9. Paltridge, R. M., Dostine, P. L., Humphrey, C. L. & Boulton, A.J. (1997). 
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11. St. Clair, R. M. (1993). Life histories of six species of Leptoceridae (InsecTrichoptera) in 
Victoria. Aust. J. Mar. Freshw. Res. 44: 363-379 

 
12. St.Clair, R. M. (2000): Preliminary keys for the identification of Australian Caddisfly 

larvae of the familiy leptoceridae. Melbourne: CRCFE 
 
13. Williams, W. D. (1980). Australian Freshwater Life. MacMillan Books: Melbourne. 

 
14. Watson JAL, Theischinger G, Abbey HM (1991) The Australian dragonflies. A guide to 

the identification, distributions and habitats of Australian Odonata. 
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Appendix E: Number of generations per year (in different classes), shown as a proportion, 
for each trait group examined.  
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Appendix F: Taxa occurring in >10% of samples and trait groups modelled in GLMMs.  

Taxa 

Chironomidae 
Oligochaeta 
Simuliidae 
Acarina 
Caenidae 
Leptophlebiidae 
Baetidae 
Elmidae 
Hydropsychidae 
Gripopterygidae 
Conoesucidae 
Hydroptilidae 
Psephenidae 
Glossosomatidae 
Coloburiscidae 
Empididae 
Leptoceridae 
Philopotamidae 
Tipulidae 
Ecnomidae 
Ancylidae 
Hydrobiosidae 
Scirtidae 
Gomphidae 

 

 

 

 

 

 



Appendix G: Predictor fixed and random effects correlations (Spearman r) for GLMM models for frequently occurring taxa and trait groups. 
Note that not all variables listed here were included in final models (see methods for details).   

  
CV 
(1month) 

CV (6 
months) 

Flow (6 
months) 

Flow (3 
months) 

Flow (1 
month) 

Flow (1 
year) 

CV (3 
months) 

CV 
(year) 

GW 
index Sample Year 

CV (1 month) 1.00 0.33 -0.30 -0.27 -0.22 -0.33 0.53 0.20 -0.14 -0.10 0.20 

CV (6 months) 0.33 1.00 -0.03 -0.06 -0.13 -0.17 0.70 0.66 -0.14 0.12 0.23 

Flow (6 months) -0.30 -0.03 1.00 0.89 0.84 0.90 -0.39 0.00 0.28 -0.14 -0.02 

Flow (3 months) -0.27 -0.06 0.89 1.00 0.96 0.75 -0.25 -0.10 0.30 -0.12 -0.02 

Flow ( 1 month) -0.22 -0.13 0.84 0.96 1.00 0.72 -0.29 -0.21 0.30 -0.16 -0.02 

Flow (1 year) -0.33 -0.17 0.90 0.75 0.72 1.00 -0.49 -0.03 0.25 -0.18 -0.10 

CV (3 months) 0.53 0.70 -0.39 -0.25 -0.29 -0.49 1.00 0.43 -0.18 0.10 0.22 

CV (year) 0.20 0.66 0.00 -0.10 -0.21 -0.03 0.43 1.00 -0.12 0.19 0.16 

GW index -0.14 -0.14 0.28 0.30 0.30 0.25 -0.18 -0.12 1.00 -0.11 0.09 

Sample -0.10 0.12 -0.14 -0.12 -0.16 -0.18 0.10 0.19 -0.11 1.00 0.06 

Year 0.20 0.23 -0.02 -0.02 -0.02 -0.10 0.22 0.16 0.09 0.06 1.00 

 


	Jarrod et al_ecohydrology_final
	Jarrod et al_Appendices

