142 research outputs found

    Plasmodium falciparum: Assessment of Selectivity of Action of Chloroquine, Alchornea cordifolia, Ficus polita, and Other Drugs by a Tetrazolium-Based Colorimetric Assay

    Get PDF
    A tetrazolium-based colorimetric selective assay (MTT-based CSA) was developed to assess the selectivity of antimalarial drugs. This in vitro assay, unlike all others, measures the ability of drugs to indirectly protect red blood cells (RBCs) from Plasmodium-falciparum-induced destruction. Optimum incubation time and number of cells needed were 5 days and 23 × 106 RBCs per well, respectively. A parasitemia range of 0.375% to 3% was found to be suitable for this assay. The MTT-based CSA determined anti-P. falciparum strain DD2 activity of chloroquine at a higher 50% effective concentration (EC50) value (21.0 μg/mL) than the isotopic microtest (10.0 μg/mL). Artesunate and oxytetracycline achieved 90% effect against DD2 with minimal or no toxicity to RBCs. Against chloroquine sensitive strain 3D7, chloroquine and Alchornea cordifolia had EC50 values of 0.025 μg/mL and 4.9 μg/mL respectively, and selective index (SI) values of >2,000 and >69.4 μg/mL, respectively

    Arterial Stiffness in Nonhypertensive Type 2 Diabetes Patients in Ghana

    Get PDF
    Background. Increased arterial stiffness is an independent cardiovascular risk factor in diabetes patients and general population. However, the contribution of diabetes to arterial stiffness is often masked by coexistent obesity and hypertension. In this study, we assessed arterial stiffness in nonhypertensive, nonobese type 2 diabetes (T2DM) patients in Ghana. Methods. In case-control design, 166 nonhypertensive, nonobese participants, comprising 96 T2DM patients and 70 nondiabetes controls, were recruited. Peripheral and central blood pressure (BP) indices were measured, and arterial stiffness was assessed as aortic pulse wave velocity (PWVao), augmentation index (AIx), cardioankle vascular index (CAVI), and heart-ankle pulse wave velocity (haPWV). Results. With similar peripheral and central BP indices, T2DM patients had higher PWVao (8.3 ± 1 versus 7.8 ± 1.3, p=0.044) and CAVI (7.9 ± 1.2 versus 6.9 ± 0.7, p=0.021) than nondiabetic control. AIx and haPWV were similar between T2DM and nondiabetic controls. Multiple regression models showed that, in the entire study participants, the major determinants of PWVao were diabetes status, age, gender, systolic BP, and previous smoking status (β = 0.22, 0.36, 0.48, 0.21, and 0.25, resp.; all p<0.05); the determinants of CAVI were diabetes status, age, BMI, heart rate, HbA1c, total cholesterol, HDL cholesterol, and previous smoking status (β = 0.21, 0.38, 0.2, 0.18, 0.24. 0.2, −0.19, and 0.2, resp.; all p<0.05). Conclusion. Our findings suggest that nonhypertensive, nonobese T2DM patients have increased arterial stiffness without appreciable increase in peripheral and central pressure indices

    Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity.

    Get PDF
    BACKGROUND: Seroepidemiology provides robust estimates for tracking malaria transmission when intensity is low and useful when there is no baseline entomological data. Serological evidence of exposure to malaria vectors and parasite contribute to our understanding of the risk of pathogen transmission, and facilitates implementation of targeted interventions. Ab to Anopheles gambiae salivary peptide (gSG6-P1) and merozoite surface protein one (MSP-1(19)) reflect human exposure to malaria vectors and parasites. This study estimated malaria transmission dynamics using serological evidence of vector and parasite exposure in southern Ghana. METHODS: Total IgG responses to both antigens in an age stratified cohort (14) were measured from South-eastern Ghana. 295 randomly selected sera were analyzed from archived samples belonging to a cohort study that were followed at 3 consecutive survey months (n = 885); February, May and August 2009. Temporal variations in seroprevalence of both antigens as well as differences between the age-stratified cohorts were determined by χ (2) test with p < 0.05 statistically significant. Non-parametric repeated ANOVA - Friedman's test was used to test differences in antibody levels. Seroprevalence data were fitted to reversible catalytic model to estimate sero-conversion rates. RESULTS: Whereas parasite prevalence was generally low 2.4%, 2.7% and 2.4% with no apparent trends with season, seroprevalence to both gSG6-P1 and MSP1(19) were high (59%, 50.9%, 52.2%) and 57.6%, 52.3% and 43.6% in respective order from Feb. to August. Repeated measures ANOVA showed differences in median antibody levels across surveys with specific significant differences between February and May but not August by post hoc Dunn's multiple comparison tests for gSG6-P1. For MSP1(19), no differences were observed in antibody levels between February and May but a significant decline was observed from May to August. Seroconversion rates for gSG6-P1 increased by 1.5 folds from February to August and 3 folds for MSP1(19). CONCLUSION: Data suggests exposure to infectious bites may be declining whereas mosquito bites remains high. Sustained malaria control efforts and surveillance are needed to drive malaria further down and to prevent catastrophic rebound. Operational factors for scaling up have been discussed

    Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection

    Get PDF
    Naturally-acquired antibody responses to malaria parasites are not only directed to protein antigens but also to carbohydrates on the surface of Plasmodium protozoa. Immunoglobulin M responses to α-galactose (α-Gal) (Galα1-3Galβ1-4GlcNAc-R)-containing glycoconjugates have been associated with protection from P. falciparum infection and, as a result, these molecules are under consideration as vaccine targets; however there are limited field studies in endemic populations. We assessed a wide breadth of isotype and subclass antibody response to α-Gal in children from Mozambique (South East Africa) and Ghana (West Africa) by quantitative suspension array technology. We showed that anti-α-Gal IgM, IgG and IgG1–4 levels vary mainly depending on the age of the child, and also differ in magnitude in the two sites. At an individual level, the intensity of malaria exposure to P. falciparum and maternally-transferred antibodies affected the magnitude of α-Gal responses. There was evidence for a possible protective role of anti-α-Gal IgG3 and IgG4 antibodies. However, the most consistent findings were that the magnitude of IgM responses to α-Gal was associated with protection against clinical malaria over a one-year follow up period, especially in the first months of life, while IgG levels correlated with malaria risk

    Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays.</p> <p>Methods</p> <p>In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant <it>Plasmodium falciparum </it>CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by <it>ex vivo </it>IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart.</p> <p>Results</p> <p>In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of e<it>x vivo </it>ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants.</p> <p>Conclusions</p> <p>All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.</p

    An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks

    Get PDF
    Human cutaneous leishmaniasis (CL) has previously been reported in West Africa, but more recently, sporadic reports of CL have increased. Leishmania major has been identified from Mauritania, Senegal, Mali, and Burkina Faso. Three zymodemes (MON-26, MON-117, and MON-74, the most frequent) have been found. The geographic range of leishmaniasis is limited by the sand fly vector, its feeding preferences, and its capacity to support internal development of specific species of Leishmania. The risk of acquiring CL has been reported to increase considerably with human activity and epidemics of CL have been associated with deforestation, road construction, wars, or other activities where humans intrude the habitat of the vector. In the Ho Municipality in the Volta Region of Ghana, a localised outbreak of skin ulcers, possibly CL, was noted in 2003 without any such documented activity. This outbreak was consistent with CL as evidenced using various methods including parasite identification, albeit, in a small number of patients with ulcers

    In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine

    Get PDF
    YesBackground: Discovery of novel gametocytocidal molecules is a major pharmacological strategy in the elimination and eradication of malaria. The high patronage of the aqueous root extract of the popular West African anti-malarial plant Cryptolepis sanguinolenta (Periplocaceae) in traditional and hospital settings in Ghana has directed this study investigating the gametocytocidal activity of the plant and its major alkaloid, cryptolepine. This study also investigates the anti-malarial interaction of cryptolepine with standard anti-malarials, as the search for new anti-malarial combinations continues. Methods: The resazurin-based assay was employed in evaluating the gametocytocidal properties of C. sanguinolenta and cryptolepine against the late stage (IV/V) gametocytes of Plasmodium falciparum (NF54). A fixed ratio method based on the SYBR Green I fluorescence-based assay was used to build isobolograms from a combination of cryptolepine with four standard anti-malarial drugs in vitro using the chloroquine sensitive strain 3D7. Results: Cryptolepis sanguinolenta ( IC50 = 49.65 nM) and its major alkaloid, cryptolepine ( IC50 = 1965 nM), showed high inhibitory activity against the late stage gametocytes of P. falciparum (NF54). In the interaction assays in asexual stage, cryptolepine showed an additive effect with both lumefantrine and chloroquine with mean ΣFIC50s of 1.017 ± 0.06 and 1.465 ± 0.17, respectively. Cryptolepine combination with amodiaquine at therapeutically relevant concentration ratios showed a synergistic effect (mean ΣFIC50 = 0.287 ± 0.10) whereas an antagonistic activity (mean ΣFIC50 = 4.182 ± 0.99) was seen with mefloquine. Conclusions: The findings of this study shed light on the high gametocytocidal properties of C. sanguinolenta and cryptolepine attributing their potent anti-malarial activity mainly to their effect on both the sexual and asexual stages of the parasite. Amodiaquine is a potential drug partner for cryptolepine in the development of novel fixed dose combinations

    Baseline exposure, antibody subclass, and hepatitis B response differentially affect malaria protective immunity following RTS,S/AS01E vaccination in African children

    Get PDF
    Background: The RTS,S/AS01E vaccine provides partial protection against malaria in African children, but immune responses have only been partially characterized and do not reliably predict protective efficacy. We aimed to evaluate comprehensively the immunogenicity of the vaccine at peak response, the factors affecting it, and the antibodies associated with protection against clinical malaria in young African children participating in the multicenter phase 3 trial for licensure. Methods: We measured total IgM, IgG, and IgG1–4 subclass antibodies to three constructs of the Plasmodium falciparum circumsporozoite protein (CSP) and hepatitis B surface antigen (HBsAg) that are part of the RTS,S vaccine, by quantitative suspension array technology. Plasma and serum samples were analyzed in 195 infants and children from two sites in Ghana (Kintampo) and Mozambique (Manhiça) with different transmission intensities using a case-control study design. We applied regression models and machine learning techniques to analyze immunogenicity, correlates of protection, and factors affecting them. Results: RTS,S/AS01E induced IgM and IgG, predominantly IgG1 and IgG3, but also IgG2 and IgG4, subclass responses. Age, site, previous malaria episodes, and baseline characteristics including antibodies to CSP and other antigens reflecting malaria exposure and maternal IgGs, nutritional status, and hemoglobin concentration, significantly affected vaccine immunogenicity. We identified distinct signatures of malaria protection and risk in RTS,S/AS01E but not in comparator vaccinees. IgG2 and IgG4 responses to RTS,S antigens post-vaccination, and anti-CSP and anti-P. falciparum antibody levels pre-vaccination, were associated with malaria risk over 1-year follow-up. In contrast, antibody responses to HBsAg (all isotypes, subclasses, and timepoints) and post-vaccination IgG1 and IgG3 to CSP C-terminus and NANP were associated with protection. Age and site affected the relative contribution of responses in the correlates identified. Conclusions: Cytophilic IgG responses to the C-terminal and NANP repeat regions of CSP and anti-HBsAg antibodies induced by RTS,S/AS01E vaccination were associated with malaria protection. In contrast, higher malaria exposure at baseline and non-cytophilic IgG responses to CSP were associated with disease risk. Data provide new correlates of vaccine success and failure in African children and reveal key insights into the mode of action that can guide development of more efficacious next-generation vaccines

    Polymorphisms in the RNASE3 Gene Are Associated with Susceptibility to Cerebral Malaria in Ghanaian Children

    Get PDF
    BACKGROUND: Cerebral malaria (CM) is the most severe outcome of Plasmodium falciparum infection and a major cause of death in children from 2 to 4 years of age. A hospital based study in Ghana showed that P. falciparum induces eosinophilia and found a significantly higher serum level of eosinophil cationic protein (ECP) in CM patients than in uncomplicated malaria (UM) and severe malaria anemia (SA) patients. Single nucleotide polymorphisms (SNPs) have been described in the ECP encoding-gene (RNASE3) of which the c.371G>C polymorphism (rs2073342) results in an arginine to threonine amino acid substitution p.R124T in the polypeptide and abolishes the cytotoxicity of ECP. The present study aimed to investigate the potential association between polymorphisms in RNASE3 and CM. METHODOLOGY/PRINCIPAL FINDINGS: The RNASE3 gene and flanking regions were sequenced in 206 Ghanaian children enrolled in a hospital based malaria study. An association study was carried out to assess the significance of five SNPs in CM (n=45) and SA (n=56) cases, respectively. The two severe case groups (CM and SA) were compared with the non-severe control group comprising children suffering from UM (n=105). The 371G allele was significantly associated with CM (p=0.00945, OR=2.29, 95% CI=1.22-4.32) but not with SA. Linkage disequilibrium analysis demonstrated significant linkage between three SNPs and the haplotype combination 371G/*16G/*94A was strongly associated with susceptibility to CM (p=0.000913, OR=4.14, 95% CI=1.79-9.56), thus, defining a risk haplotype. The RNASE3 371GG genotype was found to be under frequency-dependent selection. CONCLUSIONS/SIGNIFICANCE: The 371G allele of RNASE3 is associated with susceptibility to CM and forms part of a risk associated haplotype GGA defined by the markers: rs2073342 (G-allele), rs2233860 (G-allele) and rs8019343 (A-allele) respectively. Collectively, these results suggest a hitherto unrecognized role for eosinophils in CM pathogenesis
    corecore