181 research outputs found

    Young people and sexting in Australia: ethics, representation and the law

    Get PDF
    The Young People and Sexting in Australia report presents the findings of a qualitative study of young people’s understandings of, and responses to, current Australian laws, media and educational resources that address sexting. The project, led by Dr Kath Albury involved a review of both international local and academic research as well as popular media addressing sexting, and a review of educational resources for young people. Three focus groups were conducted with young people aged 16 and 17 in 2012, and a working paper based on those findings was then distributed to adult stakeholders in the fields of law enforcement, youth and children’s legal support, education, criminology, media and communications, youth work, youth health care, counseling and youth health promotion

    Evidence Inference 2.0: More Data, Better Models

    Full text link
    How do we most effectively treat a disease or condition? Ideally, we could consult a database of evidence gleaned from clinical trials to answer such questions. Unfortunately, no such database exists; clinical trial results are instead disseminated primarily via lengthy natural language articles. Perusing all such articles would be prohibitively time-consuming for healthcare practitioners; they instead tend to depend on manually compiled systematic reviews of medical literature to inform care. NLP may speed this process up, and eventually facilitate immediate consult of published evidence. The Evidence Inference dataset was recently released to facilitate research toward this end. This task entails inferring the comparative performance of two treatments, with respect to a given outcome, from a particular article (describing a clinical trial) and identifying supporting evidence. For instance: Does this article report that chemotherapy performed better than surgery for five-year survival rates of operable cancers? In this paper, we collect additional annotations to expand the Evidence Inference dataset by 25\%, provide stronger baseline models, systematically inspect the errors that these make, and probe dataset quality. We also release an abstract only (as opposed to full-texts) version of the task for rapid model prototyping. The updated corpus, documentation, and code for new baselines and evaluations are available at http://evidence-inference.ebm-nlp.com/.Comment: Accepted as workshop paper into BioNLP Updated results from SciBERT to Biomed RoBERT

    Performance of nonparametric species richness estimators in a high diversity plant community

    Get PDF
    The efficiency of four nonparametric species richness estimators - first-order Jackknife, second-order Jackknife, Chao2 and Bootstrap - was tested using simulated quadrat sampling of two field data sets (a sandy 'Dune' and adjacent 'Swale') in high diversity shrublands (kwongan) in south-western Australia. The data sets each comprised > 100 perennial plant species and < 10 000 individuals, and the explicit (x-y coordinate) location of every individual. We applied two simulated sampling strategies to these data sets based on sampling quadrats of unit sizes 1/400th and 1/100th of total plot area. For each site and sampling strategy we obtained 250 independent sample curves, of 250 quadrats each, and compared the estimators' performances by using three indices of bias and precision: MRE (mean relative error), MSRE (mean squared relative error) and OVER (percentage overestimation). The analysis presented here is unique in providing sample estimates derived from a complete, field-based population census for a high diversity plant community. In general the true reference value was approached faster for a comparable area sampled for the smaller quadrat size and for the swale field data set, which was characterized by smaller plant size and higher plant density. Nevertheless, at least 15-30% of the total area needed to be sampled before reasonable estimates of St (total species richness) were obtained. In most field surveys, typically less than 1% of the total study domain is likely to be sampled, and at this sampling intensity underestimation is a problem. Results showed that the second-order Jackknife approached the actual value of St more quickly than the other estimators. All four estimators were better than Sobs (observed number of species). However, the behaviour of the tested estimators was not as good as expected, and even with large sample size (number of quadrats sampled) all of them failed to provide reliable estimates. First- and second-order Jackknives were positively biased whereas Chao2 and Bootstrap were negatively biased. The observed limitations in the estimators' performance suggests that there is still scope for new tools to be developed by statisticians to assist in the estimation of species richness from sample data, especially in communities with high species richness

    Mechanical Effects of Fine-Wire Climbing on the Hindlimb Skeleton of Mice

    Get PDF
    poster abstractHigh-impact exercise (running/jumping) can stimulate multiple anabolic responses (increased trabecular bone volume, BV/TV) in the skeleton, but is also linked to an increased incidence of skeletal fracture. Thus, it is not an appropriate treatment for patients with elevated fracture risks. However, multi-directional offaxis mechanical loading can also elicit anabolic responses, even when magnitudes are relatively low. This represents a potential alternative to high-impact exercise for improving skeletal mechanical properties. To test this hypothesis, we raised twelve weanling female C57BL/6 mice to 4 months of age in custom enclosures that prevent (control) or require (experimental) manual and pedal grasping while balancing and climbing above narrow wire substrates. At sacrifice, we measured whole mouse bone density (DEXA) and performed architectural (μCT) and mechanical (4-pt bending) analyses of the femur and tibia. Body mass was similar between groups, although exercised mice were leaner (-35% fat mass). Bone mineral density was also similar, while bone mineral content was increased (+7%) in the exercised mice. Femoral midshaft polar moment of inertia was similar between groups, but exercised mice had lower BV/TV (-46%) of the distal femur and greater trabecular spacing (+21%). Exercised femora showed more total displacement (+58%) and post yield displacement (+115%) in bending than controls, and increased material toughness (+40%). Patterns were similar for the tibia. Mechanical data are consistent with high-impact exercise studies, but architectural data are not. Together they suggest that our exercise model may improve bone mechanical properties by redistributing mineral within the skeleton, and not by increasing net bone formation

    Bioconductor: open software development for computational biology and bioinformatics.

    Get PDF
    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples

    2D-3D crossover in a dense electron liquid in silicon

    Get PDF
    Doping of silicon via phosphene exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a new and well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8×1014n_s=2.8\times 10^{14}\,cm2^{-2}) disordered two-dimensional array of P atoms, the full field angle-dependent magnetostransport is remarkably well described by classic weak localization theory with no corrections due to interaction effects. The two- to three-dimensional cross-over seen upon warming can also be interpreted using scaling concepts, developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.Comment: 9 pages, 4 figures, supplementary informatio

    Locked down apps versus the social media ecology : why do young people and educators disagree on the best delivery platform for digital sexual health entertainment education?

    Get PDF
    This article reports on focus groups exploring the best way to reach young men with vulgar comedy videos that provide sexual health information. Young people reported that they found the means by which the material was presented - as a locked down app - to be problematic, and that it would better be delivered through social media platforms such as YouTube. This would make it more 'spreadable'. By contrast, adult sex education stakeholders thought the material should be contained within a locked down, stand-alone app - otherwise it might be seen by children who are too young, and/or young people might misunderstand the messages. We argue that the difference in approach represented by these two sets of opinions represents a fundamental stumbling block for attempts to reach young people with digital sexual health materials, which can be understood through the prism of different cultural forms - education versus entertainment

    FCIC Official Transcript of the Hearing on Too Big to Fail : Expectations and Impact of Extraordinary Government Intervention and The Role of Systemic Risk in the Financial Crisis

    Get PDF
    This hearing is the second session in a series on Too Big to Fail : Expectations and Impact of Extraordinary Government Intervention and The Role of Systemic Risk in the Financial Crisis

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore