588 research outputs found

    A Gray-Box Approach for Curriculum Learning

    Get PDF
    Curriculum learning is often employed in deep reinforcement learning to let the agent progress more quickly towards better behaviors. Numerical methods for curriculum learning in the literature provides only initial heuristic solutions, with little to no guarantee on their quality. We define a new gray-box function that, including a suitable scheduling problem, can be effectively used to reformulate the curriculum learning problem. We propose different efficient numerical methods to address this gray-box reformulation. Preliminary numerical results on a benchmark task in the curriculum learning literature show the viability of the proposed approach

    Technical note: First spectral measurement of the Earth's upwelling emission using an uncooled wideband Fourier transform spectrometer

    Get PDF
    The first spectral measurement of Earth&apos;s emitted radiation to space in the wideband range from 100 to 1400&nbsp;cm<sup>&minus;1</sup> with 0.5&nbsp;cm<sup>&minus;1</sup> spectral resolution is presented. The measurement was performed from a stratospheric balloon in tropical region using a Fourier transform spectrometer, during a field campaign held in Brazil in June 2005. The instrument, which has uncooled components including the detector module, is a prototype developed as part of the study for the REFIR (Radiation Explorer in the Far InfraRed) space mission. This paper shows the results of the field campaign with particular attention to the measurement capabilities of the prototype. The results are compared with measurements taken by IASI-balloon (Infrared Atmospheric Sounding Interferometer &ndash; Balloon version), aboard the same platform, and with forward model estimations. The infrared signature of clouds is observed in the measurements

    First spectral measurement of the Earth's upwelling emission using an uncooled wideband Fourier transform spectrometer

    No full text
    International audienceThe first spectral measurement of Earth's emitted radiation to space in the wideband range from 100 to 1400 cm-1 with 0.5 cm-1 spectral resolution is presented. The measurement was performed from a stratospheric balloon in tropical region using a Fourier transform spectrometer, during a field campaign held in Brazil in June 2005. The instrument, which has uncooled components including the detector module, is a prototype developed as part of the study for the REFIR (Radiation Explorer in the Far InfraRed) space mission. This paper shows the results of the field campaign with particular attention to the measurement capabilities of the prototype. The results are compared with measurements taken by IASI-balloon (Infrared Atmospheric Sounding Interferometer – Balloon version), aboard the same platform, and with forward model estimations. The infrared signature of clouds is observed in the measurements

    Technical note: First spectral measurement of the Earth's upwelling emission using an uncooled wideband Fourier transform spectrometer

    No full text
    International audienceThe first spectral measurement of Earth's emitted radiation to space in the wideband range from 100 to 1400 cm-1 with 0.5 cm-1 spectral resolution is presented. The measurement was performed from a stratospheric balloon in tropical region using a Fourier transform spectrometer, during a field campaign held in Brazil in June 2005. The instrument, which has uncooled components including the detector module, is a prototype developed as part of the study for the REFIR (Radiation Explorer in the Far InfraRed) space mission. This paper shows the results of the field campaign with particular attention to the measurement capabilities of the prototype. The results are compared with measurements taken by IASI-balloon (Infrared Atmospheric Sounding Interferometer – Balloon version), aboard the same platform, and with forward model estimations. The infrared signature of clouds is observed in the measurements

    Comparison of blood and milk non-specific immune parameters in heifers after calving in relation to udder health

    Get PDF
    A practical protocol to study udder immune status in field conditions was planned with the aim to assess different non-specific immune parameters in milk samples from dairy heifers during the periparturient period. Five herds located in northern Italy were selected and overall 39 heifers were enrolled in the trial. Milk samples were taken at 7, 14, 21, 28, 45, 60, and 75 days after calving. The parameters assessed were N-acetyl-\u3b2-glucosaminidase (NAGase), lysozyme, respiratory burst (RB), somatic cell counts (SCC) and serum protein profile. SCC and NAGase were higher in the first sampling after calving, while lysozyme showed large variations during the observation period without a definite trend. The levels of RB observed in the first two weeks after calving, even if lower, were not statistically different from the values observed in samples taken over the following weeks. This study confirmed that the levels of immune components in milk are different from what is observed at blood level in the same cow. A significant decrease in RB in milk polymorphonuclear leukocytes (PMN) post-calving was not observed; milk PMN from healthy cows showed low RB levels, while the values from infected quarters were significantly higher. Significant differences between healthy and infected animals were also observed for milk NAG, lactoglobulin and albumin. These data suggest that udder immune response could be influenced both by the cow immune status and by external factors such as pathogens and management. Therefore, the reduction in immune defences, particularly in heifers, is not unavoidable and methods to boost PMN activity should be explored

    Comparison of mid-latitude single- And mixed-phase cloud optical depth from co-located infrared spectrometer and backscatter lidar measurements

    Get PDF
    The long-wave downwelling spectral radiance measurements performed by means of the Far-Infrared Radiation Mobile Observation System (FIRMOS) spectrometer at the summit of the Zugspitze (German Alps) in the winter 2018/19 allowed the retrieval of the optical and micro-physical properties of ice and mixed clouds, showing a good agreement of the statistical relationship between the ice water path and the ice optical depth with the ones from previous works. In this paper the optical depths retrieved from FIRMOS are initially compared with selected cases calculated from backscattering light detection and ranging (lidar) data by using a transmittance method. Then, in order to compare the whole FIRMOS dataset, the power-law relationship between backscattering and extinction is used to apply the Klett method and automatize the routine. Minimizing the root mean square differences, the exponent k of the power-law relationship is assessed to be 0.85 with a variability in the range of 0.60–1.10 for ice clouds and 0.50 with a variability within 0.30–0.70 for mixed clouds

    Compact relaxations for polynomial programming problems

    Get PDF
    Reduced RLT constraints are a special class of Reformulation- Linearization Technique (RLT) constraints. They apply to nonconvex (both continuous and mixed-integer) quadratic programming problems subject to systems of linear equality constraints. We present an extension to the general case of polynomial programming problems and discuss the derived convex relaxation. We then show how to perform rRLT constraint generation so as to reduce the number of inequality constraints in the relaxation, thereby making it more compact and faster to solve. We present some computational results validating our approach
    • …
    corecore