146 research outputs found

    Site-directed mutagenesis of human ceruloplasmin:. production of a proteolytically stable protein and structure-activity relationships of type 1 sites.

    Get PDF
    A fully active recombinant human ceruloplasmin was obtained, and it was mutated to produce a ceruloplasmin stable to proteolysis. The stable ceruloplasmin was further mutated to perturb the environment of copper at the type 1 copper sites in two different domains. The wild type and the mutated ceruloplasmin were produced in the yeast Pichia pastoris and characterized. The mutations R481A, R701A, and K887A were at the proteolytic sites, did not alter the enzymatic activity, and were all necessary to protect ceruloplasmin from degradation. The mutation L329M was at the tricoordinate type 1 site of the domain 2 and was ineffective to induce modifications of the spectroscopic and catalytic properties of ceruloplasmin, supporting the hypothesis that this site is reduced and locked in a rigid frame. In contrast the mutation C1021S at the type 1 site of domain 6 substantially altered the molecular properties of the protein, leaving a small fraction endowed with oxidase activity. This result, while indicating the importance of this site in stabilizing the overall protein structure, suggests that another type 1 site is competent for dioxygen reduction. During the expression of ceruloplasmin, the yeast maintained a high level of Fet3 that was released from membranes of yeast not harboring the ceruloplasmin gene. This indicates that expression of ceruloplasmin induces a state of iron deficiency in yeast because the ferric iron produced in the medium by its ferroxidase activity is not available for the uptake

    Reconstitution of Ceruloplasmin by the Cu(I)-Glutathione Complex: EVIDENCE FOR A ROLE OF Mg2+ AND ATP

    Get PDF
    The copper-glutathione complex (Cu(I)-GSH) efficiently acted in vitro as the source of Cu(I) in the reconstitution of apoceruloplasmin. Copper was found to reinstate in the various sites in a multistep process, with metal entry into the protein in a first phase, and a second step involving conformational changes of the protein leading to the recovery of the native structural and functional properties. This latter phase was found to be strongly facilitated by Mg2+ or Ca2+ and by ATP. Both Mg2+ and ATP had to be present for optimal reconstitution. These results may shed some light on the mechanisms governing the biosynthesis of ceruloplasmin in vivo. Cu(I)-GSH was the only complex able to reconstitute ceruloplasmin at neutral pH. Glutathione may thus function to shuttle the metal from the membrane copper pump, as the Wilson disease ATPase, and ceruloplasmin in the secretory compartments of the cell. The finding that ceruloplasmin acquires the native conformation after metal entry through a complex pathway triggered by Mg2+ and ATP suggests that they may act as physiological modulators of this process in vivo

    The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype

    Get PDF
    The mechanisms that specify the vesicular phenotype of inhibitory interneurons in vertebrates are poorly understood because the two main inhibitory transmitters, glycine and GABA, share the same vesicular inhibitory amino acid transporter (VIAAT) and are both present in neurons during postnatal development. We have expressed VIAAT and the plasmalemmal transporters for glycine and GABA in a neuroendocrine cell line and measured the quantal release of glycine and GABA using a novel double-sniffer patch-clamp technique. We found that glycine is released from vesicles when VIAAT is coexpressed with either the neuronal transporter GlyT2 or the glial transporter GlyT1. However, GlyT2 was more effective than GlyT1, probably because GlyT2 is unable to operate in the reverse mode, which gives it an advantage in maintaining the high cytosolic glycine concentration required for efficient vesicular loading by VIAAT. The vesicular inhibitory phenotype was gradually altered from glycinergic to GABAergic through mixed events when GABA is introduced into the secretory cell and competes for uptake by VIAAT. Interestingly, the VIAAT ortholog from Caenorhabditis elegans (UNC-47), a species lacking glycine transmission, also supports glycine exocytosis in the presence of GlyT2, and a point mutation of UNC-47 that abolishes GABA transmission in the worm confers glycine specificity. Together, these results suggest that an increased cytosolic availability of glycine in VIAAT-containing terminals was crucial for the emergence of glycinergic transmission in vertebrates

    Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    Get PDF
    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development

    Young camel ceruloplasmin : purification and partial characterization

    Get PDF
    La céruloplasmine d'un chamelon âgé de six mois a été isolée et purifiée en une seule étape, utilisant une chromatographie sur Sépharose activée par de la chloroéthylamine. La masse moléculaire de la protéine a été déterminée par électrophorèse avec SDS et a été estimée à 130 000 Da. La protéine possède une mobilité électrophorétique légèrement supérieure à celle de l'homme, ce qui suggère que la céruloplasmine du chamelon est compacte et plus acide. Le nombre d'atomes de cuivre par molécule de céruloplasmine a été de 5,8 ± 0,3. Le spectre optique de la céruloplasmine du chamelon a montré une absorption maximale à 610 nm attribuée au cuivre de type 1 . Le spectre EPR a été totalement dépourvu d'un signal correspondant au cuivre de type 2. Les paramètres cinétiques de l'activité oxidasique, utilisant la p-phénylendiamine comme substrat, ont été déterminés : Km = 0,42 µM NADH/mn/mg céruloplasmine et Vmax = 0,93. Le pH optimal de l'activité a été de 5,7

    Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation

    Get PDF
    The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression

    A safe and effective magnetic labeling protocol for MRI-based tracking of human adult neural stem cells

    Get PDF
    Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiation potential of primary human adult neural stem cells (haNSCs). Cytoplasmic VSOP incorporation massively reduced the transverse relaxation time T2, an important parameter determining MR contrast. Cells retained cytoplasmic label for at least a month, indicating stable incorporation, a necessity for long-term imaging. Using a clinical 3T MRI, 1 Ă— 103 haNSCs were visualized upon injection in a gel phantom, but detection limit was much lower (5 Ă— 104 cells) in layer phantoms and using an imaging protocol feasible in a clinical scenario. Transcriptional analysis and fluorescence immunocytochemistry did not reveal a detrimental impact of VSOP labeling on important parameters of cellular physiology with cellular viability, stemness and neuronal differentiation potential remaining unaffected. This represents a pivotal prerequisite with respect to clinical application of this method

    Comparison of Landuse in the Municipalities of Novo mesto and Mirna PeÄŤ based on municipal spatial acts

    Full text link
    International audienceEGR1 is an immediate early gene with a wide range of activities as transcription factor, spanning from regulation of cell growth to differentiation. Numerous studies show that EGR1 either promotes the proliferation of stimulated cells or suppresses the tumorigenic growth of transformed cells. Upon interaction with ARF, EGR1 is sumoylated and acquires the ability to bind to specific targets such as PTEN and in turn to regulate cell growth. ARF is mainly localized to the periphery of nucleolus where is able to negatively regulate ribosome biogenesis. Since EGR1 colocalizes with ARF under IGF-1 stimulation we asked the question of whether EGR1 also relocate to the nucleolus to interact with ARF. Here we show that EGR1 colocalizes with nucleolar markers such as fibrillarin and B23 in the presence of ARF. Western analysis of nucleolar extracts from HeLa cells was used to confirm the presence of EGR1 in the nucleolus mainly as the 100 kDa sumoylated form. We also show that the level of the ribosomal RNA precursor 47S is inversely correlated to the level of EGR1 transcripts. The EGR1 iseffective to regulate the synthesis of the 47S rRNA precursor. Then we demonstrated that EGR1 binds to the Upstream Binding Factor (UBF) leading us to hypothesize that the regulating activity of EGR1 is mediated by its interaction within the transcriptional complex of RNA polymerase I. These results confirm the presence of EGR1 in the nucleolus and point to a role for EGR1 in the control of nucleolar metabolism

    miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation

    Get PDF
    The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA) cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons.Peer reviewe
    • …
    corecore