82 research outputs found

    Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome.

    Get PDF
    International audienceBACKGROUND: Patients with the Shwachman-Diamond syndrome often develop hematologic complications. No risk factors for these complications have so far been identified. The aim of this study was to classify the hematologic complications occurring in patients with Shwachman-Diamond syndrome and to investigate the risk factors for these complications. DESIGN AND METHODS: One hundred and two patients with Shwachman-Diamond syndrome, with a median follow-up of 11.6 years, were studied. Major hematologic complications were considered in the case of definitive severe cytopenia (i.e. anemia <7 g/dL or thrombocytopenia <20 Ă— 10(9)/L), classified as malignant (myelodysplasia/leukemia) according to the 2008 World Health Organization classification or as non-malignant. RESULTS: Severe cytopenia was observed in 21 patients and classified as malignant severe cytopenia (n=9), non-malignant severe cytopenia (n=9) and malignant severe cytopenia preceded by non-malignant severe cytopenia (n=3). The 20-year cumulative risk of severe cytopenia was 24.3% (95% confidence interval: 15.3%-38.5%). Young age at first symptoms (<3 months) and low hematologic parameters both at diagnosis of the disease and during the follow-up were associated with severe hematologic complications (P<0.001). Fifteen novel SBDS mutations were identified. Genotype analysis showed no discernible prognostic value. CONCLUSIONS Patients with Shwachman-Diamond syndrome with very early symptoms or cytopenia at diagnosis (even mild anemia or thrombocytopenia) should be considered at a high risk of severe hematologic complications, malignant or non-malignant. Transient severe cytopenia or an indolent cytogenetic clone had no deleterious value

    Polychromatic guide star: feasibility study

    Get PDF
    International audienceAdaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D; program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS

    Polychromatic guide star: feasibility study

    No full text
    International audienceAdaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D; program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS

    Retour sur les « Inocybes jaunes ou jaunâtres »

    No full text
    International audienceQuatorze espèces d'inocybes (au sens large : genres Pseudosperma et Inocybe) à chapeaux jaunes ou jaunâtres, décrits sur des critères morphologiques dans ce même bulletin en 2015 (Bull. Soc. mycol. Fr., 131, fasc. 1-2, p. 1-96) ont fait l'objet d'une révision génétique par séquençage du marqueur ITS. Quatre taxons (Pseudosperma maleolens, P. permelliolens, Inocybe ochraceolutea, I. pseudoscabelliformis) sont confirmés et des synonymies nouvelles établies avec des taxons décrits antérieurement. Une espèce nouvelle, précédemment confondue avec P. permelliolens, a été révélée par les analyses faites et est validée ici : Pseudosperma gemellum sp. nov. Pseudosperma ponderosum est signalé pour la première fois en France sous une forme nouvelle, f. velatorimosum f. nov

    New Insights into Alpine <i>Cortinariaceae</i> (Basidiomycota): Three New Species, Two Type Revisions, and a New Record for the Alpine Zone

    No full text
    Thirty-one alpine species of Cortinarius (Agaricales, Cortinariaceae) were described from the alpine zone of the Alps during the second half of the XX century, by the Swiss mycologist Jules Favre, and by the French mycologists Denise Lamoure and Marcel Bon. Notoriously difficult to identify by macro- and microscopical characters, most of these species, which belong to subgen. Telamonia, have been thoroughly revised in global publications based on type sequencing. Recent surveys in the alpine areas of France (Savoie) and Italy (Lombardy), as well as the sequencing of D. Lamoure’s collections, identified three new species that are here described and illustrated: C. dryadophilus in sect. Castanei, C. infidus in sect. Verni, and C. saniosopygmaeus in sect. Saniosi. The holotypes of C. caesionigrellus Lamoure and C. paleifer var. brachyspermus Lamoure could be sequenced. A recent collection of the former is described and illustrated here for the first time, and based on available data, the latter name is recombined as Cortinarius flexipes var. brachyspermus comb. nov. Lastly, C. argenteolilacinus var. dovrensis is reported from the alpine zone for the first time and a new combination, Thaxterogaster dovrensis comb. & stat. nov. is introduced in the present work

    Screening for antibacterial activity of French mushrooms against pathogenic and multidrug resistant bacteria

    No full text
    International audienceIn the alarming context of antibiotic resistance, we have explored the antibacterial potential of French mushrooms against wild-type and multidrug-resistant (MDR) bacteria. In order to accelerate the discovery of promising compounds, screenings were carried out by TLC-direct bioautography. A total of 70 extracts from 31 mushroom species were evaluated against five wild-type bacteria: Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. This first screening revealed that 95% of the extracts contained antibacterial compounds. Generally, it was observed that EtOAc extracts exhibited more active compounds than methanolic extracts. Also, all extracts were overall more active against Gram-positive bacteria than against Gram-negative strains. The most promising mushroom extracts were then screened against various multidrug-resistant strains of S. aureus and E. coli. Activity was globally less on MDR strains; however, two mushroom species, Fomitopsis pinicola and Scleroderma citrinum, still contained several compounds inhibiting the growth of these MDR pathogenic bacteria. Stearic acid was identified as a ubiquitous compound contributing to the antibacterial defence of mushrooms. This screening has revealed the potential of macromycetes as a source of antibacterial compounds; further assays are mandatory to consider fungal compounds as promising drugs to counter antibiotic resistance
    • …
    corecore