361 research outputs found

    Sensitive Observations of Radio Recombination Lines in Orion and W51: The Data and Detection of Systematic Recombination Line Blueshifts Proportional to Impact Broadening

    Full text link
    Sensitive spectral observations made in two frequency bands near 6.0 and 17.6 GHz are described for Orion and W51. Using frequency switching we were able to achieve a dynamic range in excess of 10,000 without fitting sinusoidal or polynomial baselines. This enabled us to detect lines as weak as TA 1mKinthesestrongcontinuumsources.Hydrogenrecombinationlineswith_{A} ~1mK in these strong continuum sources. Hydrogen recombination lines with \Delta n$ as high as 25 have been detected in Orion. In the Orion data, where the lines are stronger, we have also detected a systematic shift in the line center frequencies proportional to linewidth that cannot be explained by normal optical depth effects.Comment: 22 pages, 13 figures. Accepted for publication in Astrophysics and Space Scienc

    Strings, T-duality breaking, and nonlocality without the shortest distance

    Get PDF
    T-duality of string theory suggests nonlocality manifested as the shortest possible distance. As an alternative, we suggest a nonlocal formulation of string theory that breaks T-duality at the fundamental level and does not require the shortest possible distance. Instead, the string has an objective shape in spacetime at all length scales, but different parts of the string interact in a nonlocal Bohmian manner.Comment: 7 pages, revised, to appear in Eur. Phys. J.

    On the Resolution of the Time-Like Singularities in Reissner-Nordstrom and Negative-Mass Schwarzschild

    Full text link
    Certain time-like singularities are shown to be resolved already in classical General Relativity once one passes from particle probes to scalar waves. The time evolution can be defined uniquely and some general conditions for that are formulated. The Reissner-Nordstrom singularity allows for communication through the singularity and can be termed "beam splitter" since the transmission probability of a suitably prepared high energy wave packet is 25%. The high frequency dependence of the cross section is w^{-4/3}. However, smooth geometries arbitrarily close to the singular one require a finite amount of negative energy matter. The negative-mass Schwarzschild has a qualitatively different resolution interpreted to be fully reflecting. These 4d results are similar to the 2d black hole and are generalized to an arbitrary dimension d>4.Comment: 47 pages, 5 figures. v2: See end of introduction for an important note adde

    Assessing the long-term effectiveness of cladribine vs. placebo in the relapsing-remitting multiple sclerosis CLARITY randomized controlled trial and CLARITY extension using treatment switching adjustment methods

    Get PDF
    Objectives: Treatment switching adjustment methods are often used to adjust for switching in oncology randomized controlled trials (RCTs). In this exploratory analysis, we apply these methods to adjust for treatment changes in the setting of an RCT followed by an extension study in relapsing-remitting multiple sclerosis. Methods: The CLARITY trial evaluated cladribine tablets versus placebo over 96 weeks. In the 96-week CLARITY Extension, patients who received placebo in CLARITY received cladribine tablets; patients who received cladribine tablets in CLARITY were re-randomized to placebo or cladribine tablets. Endpoints were time to first qualifying relapse (FQR) and time to 3- and 6-month confirmed disability progression (3mCDP, 6mCDP). We aimed to compare the effectiveness of cladribine tablets to placebo over CLARITY and the extension. The rank preserving structural failure time model (RPSFTM) and Iterative Parameter Estimation (IPE) were used to estimate what would have happened if patients had received placebo in CLARITY and the extension, versus patients that received cladribine tablets and switched to placebo. To gauge whether treatment effect waned after the 96 weeks of CLARITY, we compared hazard ratios (HRs) from the adjustment analysis with HRs from CLARITY. Results: The RPSFTM resulted in a HR of 0.48 (95% confidence interval [CI] 0.36-0.62) for FQR, 0.62 (95% CI 0.46-0.84) for 3mCDP, and 0.62 (95% CI 0.44-0.88) for 6mCDP. IPE algorithm results were similar. CLARITY HRs were 0.44 (95% CI 0.34-0.58), 0.60 (95% CI 0.41-0.87) and 0.58 (95% CI 0.40-0.83) for FQR, 3mCDP and 6mCDP respectively. Conclusions: Treatment switching adjustment methods are applicable in non-oncology settings. Adjusted CLARITY plus CLARITY Extension HRs were similar to the CLARITY HRs, demonstrating significant treatment benefits associated with cladribine tablets versus placebo

    Model for the hydration of non-polar compounds and polymers

    Full text link
    We introduce an exactly solvable statistical-mechanical model of the hydration of non-polar compounds, based on grouping water molecules in clusters where hydrogen bonds and isotropic interactions occur; interactions between clusters are neglected. Analytical results show that an effective strengthening of hydrogen bonds in the presence of the solute, together with a geometric reorganization of water molecules, are enough to yield hydrophobic behavior. We extend our model to describe a non-polar homopolymer in aqueous solution, obtaining a clear evidence of both ``cold'' and ``warm'' swelling transitions. This suggests that our model could be relevant to describe some features of protein folding.Comment: REVTeX, 6 pages, 3 figure

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Light Gluino Mass and Condensate from Properties of η\eta and η\eta'

    Full text link
    We investigate whether known properties of the η\eta' meson are consistent with its being the Goldstone boson of the spontaneously broken anomaly-free R symmetry required in the light gluino scenario. We fit the masses and 2γ2\gamma decays of the η\eta and η\eta' mesons, and also their production in radiative J/ψJ/\psi decays. We find that the ηη\eta-\eta' system is well-described in the light gluino scenario, if mλ(84144)MeVm_\lambda\simeq (84-144) MeV and (0.150.36)GeV3 \simeq -(0.15-0.36) GeV^3. These values are in the range expected when the gluino gets its mass entirely from radiative corrections.Comment: 14 pages, LATEX file, 1 PS fig. Some discussions are added, to be published in Phys. Lett.

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
    corecore