579 research outputs found

    The Impact of Students’ Attitudes After Implementing a Leadership Collaborative Grouping Method in a Collegiate Technical Mathematics Class

    Get PDF
    This research paper explored students’ attitudes towards mathematics before and after the implementation of an experimental instructional method. The measurement tool that was used is the Mathematics Attitude Inventory for Students (ATMI). The experimental methodology implemented in the collegiate class is a leadership based cooperative learning model. Students were surveyed twice. The first installment of the ATMI was conducted prior to a mathematics unit that spanned three classes. The second installment of the ATMI survey was conducted after the unit was completed. Student surveys were assessed and determined if the experimental model had any impact of students’ attitudes towards mathematics. The findings were unexpected. The students’ overall view of mathematics went down 0.34 of a 5-point Likert score from the pre and post surveys of the ATMI. However, three additional questions were added to the second installment of the ATMI survey and uncovered most students found the experimental cooperative leadership model beneficial

    Complexity Equals Anything II

    Full text link
    We expand on our results in arXiv:2111.02429 to present a broad new class of gravitational observables in asymptotically Anti-de Sitter space living on general codimension-zero regions of the bulk spacetime. By taking distinct limits, these observables can reduce to well-studied holographic complexity proposals, e.g., the volume of the maximal slice and the action or spacetime volume of the Wheeler-DeWitt patch. As with the codimension-one family found in arXiv:2111.02429, these new observables display two key universal features for the thermofield double state: they grow linearly in time at late times and reproduce the switchback effect. Hence we argue that any member of this new class of observables is an equally viable candidate as a gravitational dual of complexity. Moreover, using the Peierls construction, we show that variations of the codimension-zero and codimension-one observables are encoded in the gravitational symplectic form on the semi-classical phase-space, which can then be mapped to the CFT.Comment: 53 pages + 6 appendice

    Sperm collection and storage for the sustainable management of amphibian biodiversity

    Get PDF
    Current rates of biodiversity loss pose an unprecedented challenge to the conservation community, particularly with amphibians and freshwater fish as the most threatened vertebrates. An increasing number of environmental challenges, including habitat loss, pathogens, and global warming, demand a global response toward the sustainable management of ecosystems and their biodiversity. Conservation Breeding Programs (CBPs) are needed for the sustainable management of amphibian species threatened with extinction. CBPs support species survival while increasing public awareness and political influence. Current CBPs only cater for 10% of the almost 500 amphibian species in need. However, the use of sperm storage to increase efficiency and reliability, along with an increased number of CBPs, offer the potential to significantly reduce species loss. The establishment and refinement of techniques over the last two decades, for the collection and storage of amphibian spermatozoa, gives confidence for their use in CBPs and other biotechnical applications. Cryopreserved spermatozoa has produced breeding pairs of frogs and salamanders and the stage is set for Lifecycle Proof of Concept Programs that use cryopreserved sperm in CBPs along with repopulation, supplementation, and translocation programs. The application of cryopreserved sperm in CBPs, is complimentary to but separate from archival gene banking and general cell and tissue storage. However, where appropriate amphibian sperm banking should be integrated into other global biobanking projects, especially those for fish, and those that include the use of cryopreserved material for genomics and other research. Research over a broader range of amphibian species, and more uniformity in experimental methodology, is needed to inform both theory and application. Genomics is revolutionising our understanding of biological processes and increasingly guiding species conservation through the identification of evolutionary significant units as the conservation focus, and through revealing the intimate relationship between evolutionary history and sperm physiology that ultimately affects the amenability of sperm to refrigerated or frozen storage. In the present review we provide a nascent phylogenetic framework for integration with other research lines to further the potential of amphibian sperm banking

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    Get PDF
    Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy.We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing.Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production
    • …
    corecore