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Sperm collection and storage for the sustainable management of
amphibian biodiversity

Abstract
Current rates of biodiversity loss pose an unprecedented challenge to the conservation community,
particularly with amphibians and freshwater fish as the most threatened vertebrates. An increasing number of
environmental challenges, including habitat loss, pathogens, and global warming, demand a global response
toward the sustainable management of ecosystems and their biodiversity. Conservation Breeding Programs
(CBPs) are needed for the sustainable management of amphibian species threatened with extinction. CBPs
support species survival while increasing public awareness and political influence. Current CBPs only cater for
10% of the almost 500 amphibian species in need. However, the use of sperm storage to increase efficiency
and reliability, along with an increased number of CBPs, offer the potential to significantly reduce species loss.
The establishment and refinement of techniques over the last two decades, for the collection and storage of
amphibian spermatozoa, gives confidence for their use in CBPs and other biotechnical applications.
Cryopreserved spermatozoa has produced breeding pairs of frogs and salamanders and the stage is set for
Lifecycle Proof of Concept Programs that use cryopreserved sperm in CBPs along with repopulation,
supplementation, and translocation programs. The application of cryopreserved sperm in CBPs, is
complimentary to but separate from archival gene banking and general cell and tissue storage. However, where
appropriate amphibian sperm banking should be integrated into other global biobanking projects, especially
those for fish, and those that include the use of cryopreserved material for genomics and other research.
Research over a broader range of amphibian species, and more uniformity in experimental methodology, is
needed to inform both theory and application. Genomics is revolutionising our understanding of biological
processes and increasingly guiding species conservation through the identification of evolutionary significant
units as the conservation focus, and through revealing the intimate relationship between evolutionary history
and sperm physiology that ultimately affects the amenability of sperm to refrigerated or frozen storage. In the
present review we provide a nascent phylogenetic framework for integration with other research lines to
further the potential of amphibian sperm banking.
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Abstract  36 

Current rates of biodiversity loss pose an unprecedented challenge to the conservation community, 37 

particularly with amphibians and freshwater fish as the most threatened vertebrates. An increasing 38 

number of environmental challenges, including habitat loss, pathogens, and global warming, demand a 39 

global response toward the sustainable management of ecosystems and their biodiversity. Conservation 40 

breeding programs (CBPs) are needed for the sustainable management of amphibian species threatened 41 

with extinction. CBPs support species survival while increasing public awareness and political 42 

influence. Current CBPs only cater for 10% of the almost 500 amphibian species in need. However, the 43 

use of sperm storage to increase efficiency and reliability, along with an increased number of CBPs, 44 

offer the potential to significantly reduce species loss. The establishment and refinement of techniques 45 

for the collection and storage of amphibian spermatozoa, over the last two decades, gives confidence for 46 

their use in CBPs and other biotechnical applications. Cryopreserved spermatozoa has produced 47 

breeding pairs of frogs and salamanders and the stage is set for lifecycle proof of concept studies that 48 

use cryopreserved sperm in CBPs along with repopulation, supplementation, and translocation 49 

programs. The application of cryopreserved sperm in CBPs, is complimentary to but separate from 50 

archival gene banking and general cell and tissue storage. However, where possible amphibian sperm 51 

banking should be standardised and integrated into other global biobanking projects, especially those for 52 

fish, and those that include the use of cryopreserved material for genomics and other research. Research 53 

over a broader range of amphibian species, and more uniformity in experimental methodology, is needed 54 

to inform both theory and application. Genomics is revolutionising our understanding of biological 55 

processes and increasingly guiding species conservation through the identification of evolutionary 56 

significant units as the conservation focus, and through revealing the intimate relationship between 57 

evolutionary history and sperm physiology that ultimately affects the amenability of sperm to 58 

refrigerated or frozen storage. In the present review we provide a nascent phylogenetic framework for 59 

integration with other research lines to further the potential of amphibian sperm banking.  60 

 61 
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1. Introduction  63 

 64 

Conservation Breeding Programs (CBPs) are required for the sustainable management of amphibian 65 

species threatened with extinction.  The use of cryopreserved spermatozoa in CBPs perpetuates male 66 

genetic variation, lowers costs, increases biosecurity, reduces the number of required captive 67 

individuals, enables the fertilization of a single female’s spawn with spermatozoa from many genetically 68 

diverse males, and reduces the need for animal transport [1,2,3]. Sperm banks for fishes exist globally 69 

for projects ranging from the perpetuation of zebra-fish cell lines [4] to maintaining genetic variation in 70 

sport fishing based CBPs and in aquaculture programs [5]. However, the cryopreserved spermatozoa of 71 

amphibians has only been practically applied to maintain Xenopus transgenic lines for biotechnological 72 

research [6]. Techniques for the post-thaw recovery of cryopreserved fishes [7,8] and amphibians [9] 73 

oocytes or embryos have not succeeded. However, primordial germ cells from cryopreserved fish 74 

embryos have been transplanted to amphibian embryos and then have developed into the gonads of 75 

fertile adults [10]. Similar technology for amphibians offers the greatest current potential for the 76 

cryopreserved storage of female germplasm. In any case, live females are needed to provide oocytes for 77 

in vitro fertilization with stored spermatozoa, or to supply larvae for primordial germ cell transplantation 78 

[9]. 79 

 80 

The Amphibian Ark [AArk, [11]) was established as a zoo based organisation to support 81 

amphibian CBPs. The AArk Species Conservation Assessments [12] recommends that of the 570 82 

amphibian species requiring CBPs, that 500 species or 90% need the support of gene banks including 83 

the use of cryopreserved spermatozoa (Supplementary Table 1). 84 

 85 

 86 

The loss of genetic variation in CBPs can result in poor reproduction, health, and survival 87 

[13,14]. Even with large founder populations, genetic selection can occur in a few generations for rapid 88 

growth, early maturity, amenability to husbandry or ease of reproduction in captivity [13,15]. Selection 89 

toward domestication can be reduced but not eliminated by strict studbook management. However, even 90 

strict studbook management is subject to loss of broodstock and difficulties in transporting broodstock 91 

between breeding groups. The optimal approach is to use cryopreserved spermatozoa to reduce the 92 

effective number of male generations to one, and to provide an easy means of transport [13].  93 

 94 
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The natural genetic variation of species can be recovered through the use of cryopreserved 95 

spermatozoa using oocytes from highly domestic strains (Fig. 1). Consequently, domestic strains of 96 

species without studbook requirement, both in aquaculture and in private keeper’s collections, could 97 

contribute female brood stock to CBPs if adequate stocks of cryopreserved sperm were available to 98 

restore the species genetic variation.  In the case of Andrias davidianus, where genomics recently 99 

revealed the taxon consists of 5 component species now mainly as aquaculture hybrids [16], and with all 100 

5 species are functionally extinct in nature [17], these species could be re-established with the use of 101 

stored sperm. 102 

 103 

Insert Fig. 1.  104 

 105 

The spermatozoa of fishes and amphibians can remain viable for days to weeks during refrigerated 106 

storage at ~4°C, or indefinitely when cryopreserved in liquid nitrogen at -196°C (Supplementary Tables 107 

2,3. [16,18]). Post-thaw, motile spermatozoa can be used for artificial fertilization [2] and immotile 108 

spermatozoa for intracytoplasmic injection into the oocyte (ICSI; [19]). In amphibians, post-thaw 109 

spermatozoa from Anurans (frogs and toads) has resulted in reproducing pairs of Xenopus [6] and 110 

sexually mature males of tree frogs [20], and in Cuadata reproducing pairs of *Salamanders [21], and 111 

almost mature Cryptobranchids (Giant salamanders, Dale McGinnity, personal communication).  112 

 113 

*Urodeles include all extinct and extant salamanders. The Caudata, Fig. 2. have three main lineages; the Crypotobranchidae, Sirenidae, and 114 

“other salamanders”. In this review for grammatical simplicity where appropriate we simply use the term ¨Salamander¨ rather than ¨other 115 

salamander).  116 

 117 

We use studies of freshwater fishes spermatozoa to provide the closest phylogenetic, morphological, and 118 

physiological comparisons to amphibian spermatozoa. The parameters used to assess the quality of 119 

amphibian spermatozoa include the percentage with flagella movement (percent activation) and velocity 120 

(percentage motility), and the velocity and longevity of motile spermatozoa [22]. Membrane integrity, 121 

spermatozoa concentration, DNA integrity, and acrosome integrity, and relationship between these and 122 

fertilisation and larval growth to adults are also assessed [23].  123 

 124 

2. Amphibian phylogenetics, fertilisation history, and reproductive strategies 125 

 126 
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hylogenetic patterns in the amenability of amphibian species spermatozoa, to the physiological and 127 

morphological stressors during storage, could facilitate the development of storage techniques and in 128 

general inform amphibian spermatology [2,24,25]. Most Anurans externally fertilise through 129 

spermatozoa shed in spermic urine. Spermatozoa is released in semen in the Cryptobranchidae 130 

(Cryptobranchids and Hydronobids) and Sirenidae. Fertilization is internal in all Salamanders through 131 

the deposition of spermatophores by males that are then picked up by the cloaca of females and all 132 

species of Caecilians are internal fertilizers [26].  133 

 134 

Of amphibians, the Anurans have the most complicated evolutionary history of fertilisation: 135 

primordially with external fertilisation, then internal fertilization as Lissamphibians, external 136 

fertilization as Batrachians, a 40 million year period of internal fertilization, then a reversion to external 137 

fertilisation from 275 mya to the present [27]. One primitive Anuran retains internal fertilisation [25,28], 138 

and less than 15 known species have reverted to internal fertilisation [28]. The Caudata have a less 139 

complicated evolutionary history than the Anurans with two families the Sirenidae and the 140 

Cryptobranchidae retaining the ancestral Batrachian external fertilisation, and Salamanders readopting 141 

internal fertilisation. Caecilians are internal fertilisers ([27] Fig. 2). 142 

 143 

Insert Fig. 2.  144 

  145 

The three sub-orders of Anurans are the Archaeobatrachia with 4 families and 27 species, the 146 

Mesobatrachia with 6 families and 168 species, and Neobatrachia with 21 families and the 5000 147 

species. In Anurans, the spermatozoa of 30 species has been cryopreserved: species in seven 148 

Neobatrachia families, two species in one Mesobatrachia family, the Pipidae, which includes Xenopus. 149 

In anurans, post-thaw assessment of spermatozoa viability as defined by live/dead stains was reported 150 

for 12 species, motility for 16 species, and life stages to first cleavage for 4 species, larval development 151 

for 7 species, and development to adults for 2 species. In the Caudata the spermatozoa of 5 species have 152 

been cryopreserved, 3 salamanders and 2 cryptobranchids. Post-thaw assessment of spermatozoa 153 

viability in spermatophores was reported for one species, motility for two species, development to late 154 

juvenile/adults with one species, and to fertile adults in one species (Supplementary Table 3). 155 

 156 

3. Sperm collection and sperm concentration 157 
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 158 

Sperm can be collected as testicular macerates or suspensions from any sexually mature male 159 

amphibian.  Anuran spermatozoa can also be collected through hormonal induction, either as spermic 160 

urine through abdominal massage [23] or through cannulation of the cloaca [29,30,31,32,33.34]. 161 

Hormonal induction causes internally fertilising salamanders to deposit spermatophores [35] or to 162 

express sperm in cloacal fluid (Fig. 3,4 [36,37,38]).  163 

 164 

Insert Fig. 3.  165 

 166 

Both phylogeny and the environment, especially climate, influence the reproductive strategies of 167 

amphibian species and their amenability to hormonal induction [2,22,40]. Hormones can be 168 

administered safely and efficiently by injection even with small frogs [31,32,33], and generally most 169 

species are amenable to hormonal induction of sperm release with gonadotropin releasing hormones 170 

(GnRH) or human chorionic gonadotropin (hCG [2]). GnRH is generally more effective at inducing 171 

spermiation than hCG across a wide range of species, however, there are a number of species, mainly 172 

from the Bufonidae and Limnodynastidae families, where hCG elicits a stronger response [22,39,41]. 173 

Inter-taxon variation also occurs between closely related species, where due to its fertilisation strategy a 174 

single species from a family otherwise amenable to hormonal induction responded poorly both hCG and 175 

GnRH [2,29]. This and other exceptions may elucidate the specific evolutionary drivers behind 176 

reproductive strategies [2]. 177 

 178 

Hormonal induction depends on the presence of mature spermatozoa in the testes [24]. Seasonal 179 

quiescence in spermatozoa maturation can be circumvented through the use of both priming, where sub-180 

inducing doses of hormones, along with dopamine antagonists [42,43], are administered days before the 181 

final inducing dose [22,24].  Hormone administration generally induces Anuran spermic urine over 182 

periods between 2 -12 h with clear peaks in spermatozoa concentration between 3 and 7 h 183 

(Supplementary Table 2. [22,23,24,33,41,44,45]).  184 

 185 

The most reliable collection technique for large quantities of mature Anuran spermatozoa is 186 

through the maceration of the testes to produce spermatozoa suspensions [6,18]). The concentration of 187 

spermatozoa in testicular macerates at ~108-9/ml is generally one to three magnitudes higher than in 188 



 

 

7 

7 

spermic urine (Supplementary Table 2). The high concentration, volume and quality of testicular 189 

spermatozoa has resulted in its use in most studies of Anuran spermatozoa cryopreservation until 190 

recently, and in the only two studies resulting in mature reproducing pairs [6] or sexually mature males 191 

[20]. As well, spermatozoa in suspension from testes have higher refrigerated storage potentials than 192 

those stored in intact testes, spermic urine, or in semen (Supplementary Table 2. [6,46]).  193 

 194 

Caudata spermatozoa in high concentrations and volumes in semen is easy to collect from 195 

seasonally mature or hormonally induced Cryptobranchidae [47,48], and as hormonally induced 196 

spermatozoa in cloacal fluid, even from small salamanders approximately 8 g in weight, making the 197 

collection of spermatozoa from testes unnecessary unless from recently dead  individuals (Ruth Marcec, 198 

personal communication). The semen of the cryptobranchid, A. davidianus, is collected at concentrations 199 

of 11 x 106/mL and up to 12mL/kg of male weight [47,48] with adult males weighing up to 50 kg [49], 200 

but in lower absolute and comparative volumes of 2 mL in Cryptobranchus (the North American giant 201 

salamander clade, Dale McGinnity, personal communication). The comparative differences in sperm 202 

numbers between amphibian species may generally relate to different levels of sperm competition [45], 203 

including internal competition in Salamanders where the number of spermatozoa per spermatophore 204 

varies by more than three magnitudes (Supplementary Table 2. [47]).  205 

 206 

Insert Fig. 4.  207 

 208 

Processing during cryopreservation, thawing, and recovery can reduce the concentration of 209 

spermatozoa to less than <15% of the original [50]. Consequently, in samples derived from spermic 210 

urine the post-thaw spermatozoa concentrations could be lower than the fertilization optimum, and even 211 

lower than the fertilisation threshold. In Anurans, fertilization rates decline in a sigmoidal curve from 212 

the optimum spermatozoa concentration, and concentration three magnitudes lower than the optimum 213 

provided only 30% fertilization in one species [51] no fertilisation in another [52]. The optimal 214 

spermatozoa concentrations for fertilization may depend on other factors in addition to spermatozoa 215 

motility. These include chemo-attractants found in the oocyte gel, oocyte size, or in terrestrial-breeding 216 

and foam-nesting Anurans the direct deposition of spermatozoa onto oocytes [2].  217 

 218 
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Centrifugation is used to concentrate spermatozoa from spermic urine, to remove protein and 219 

lipid components from fresh spermatozoa suspensions [44], and post-thaw to remove cryodiluents [20].  220 

The use of centrifugation should be minimised as spermatozoa motility can be reduced by up to 50% 221 

through morphological damage [53]. Therefore, in cases where there are surplus amphibians in breeding 222 

programs [6], or males can be taken from wild populations [20], the collection of high numbers and 223 

concentrations of spermatozoa directly through testes maceration may be the preferred option.   224 

 225 

In some fish species the contamination of semen with urine decreases spermatozoa viability 226 

[54,55], and in others urine is needed for spermatozoa maturation [56]. Anuran spermatozoa from 227 

spermic urine exhibits slightly lower viability than testicular spermatozoa possibly as a consequence of 228 

activation in the lower osmolality of urine in comparison to the isotonic testicular environment [45]. 229 

Nevertheless, spermatozoa stored in spermic urine at room temperature have been reported to retain 230 

similar high levels of motility to testicular sperm for up to 45 m [34]. The effect of urine contamination 231 

on Caudata spermatozoa in semen, or when sampled in milt is unknown, but urine contamination of 232 

fishes semen negatively affects spermatozoon metabolism [54,55].  233 

 234 

4. Effects of environmental factors on sperm motility activation and fertilization rate 235 

 236 

The major environmental factors affecting spermatozoa motility in externally fertilizing amphibians and 237 

fishes are media osmolality, ionic composition, pH, and temperature [25,45]. The motility of 238 

spermatozoa in some freshwater fishes is highly influenced by the extracellular concentration of 239 

electrolytes [57,58]. The motility of spermatozoa is activated when sperm transition from the high 240 

osmolality of the testes to the low osmolality of the freshwater environment, and with tested amphibians 241 

is the major factor controlling activation [25,59,60]. With Anuran spermatozoa an osmolality of 250 242 

mOsmolkg-1 prevents activation [25], and dependent on the species osmolalities below 70 mOsmolkg-1 243 

[60] to 105 mOsmolkg-1 [61] promote activation. Inter-specific variation in the optimal osmolality for 244 

fertilization in Anurans was shown where in one species fertility was maintained up to 40 mM [60], in 245 

another a steady decline in fertility occurred as osmolalities increased to more than 7 mOsmolkg-1 [61], 246 

and even intra-specific variation was shown in the optimum osmolality in one species [62].  247 

 248 

Anuran spermatozoa show the longest period of sperm motility of all amphibians [25,61] with an 249 

average period of motility of 1 h [25]. However, at extremes the spermatozoa of Xenopus only maintains 250 
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motility for 2 min [63,64] and in one species motility is extended to 7 h [61].  The spermatozoa of 251 

Cryptobranchidae and some freshwater fish stays motile for up to 10 min, but with most freshwater fish 252 

motility only lasts for seconds to a few min [25]. Higher osmolalities increase the longevity of 253 

spermatozoa possibly from less energy being partitioned from motility to maintaining osmotic 254 

equilibration [25,65].  255 

 256 

The longevity of both fish [65,66,67] and amphibian spermatozoa [68] depends on specific 257 

metabolic pathways and the availability of energy substrates [69,70]. Adenosine triphosphate (ATP), 258 

adenosine diphosphate, and creatine phosphate [71,72] provide energy for flagella motion and maintain 259 

ionic and water balance across plasma membranes [57].  In many fish species increased spermatozoa 260 

velocity also positively corresponds with ATP levels [70]. Species variability and specificity of energy 261 

metabolism has been shown for fishes [72], however, species specificity has not been shown in the few 262 

studies of amphibians. In the Bufonid, Anaxyrus fowleri, ATP/adenosine monophosphate over a wide 263 

range of concentrations did not affect spermatozoon velocity or longevity (Robert Browne pers. 264 

communication).  265 

 266 

4.1 Diluents  267 

 268 

Diluents are formulated to simulate the cellular concentrations of ions but may also contain organic 269 

supplements (Supplementary Table 3 [73,74]). Diluents approximating 220 mOsmolkg-1 are generally 270 

used as cryodiluents [37,38,73,74], to deactivate spermatozoon motility [74,75], and at low 271 

concentrations are used for post-thaw sperm equilibration, activation and fertilization [75]. The ionic 272 

composition of diluents and their osmolality for fish are similar to those of blood plasma, and generally 273 

include Na+, Ca2+, K+, Cl-, and H2CO3
- ions. Other ions that may be formulated in diluents are Mg2+, 274 

SO4
-, and increased relative concentrations of K+ or Ca2+ or H2CO3

-, however, their benefits are species 275 

specific in fish [57].  276 

 277 

The formulation of diluents for amphibians were originally taken from physiological salines used 278 

for general biology [75], and now include formulations used for cell culture, and for the storage or 279 

fertilisation of fish and mammalian spermatozoa [1,2]. However, the K+ concentration in most of these 280 

diluents is only 2 mM, whereas, K+ concentrations in anuran testicular plasma is 70 mM in Xenopus 281 
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and 40 mM in Bufo [76]. A low K+ concentration in diluents can produce membrane damage, therefore, 282 

a greater knowledge of the role of K+ and other ions in diluents for amphibian spermatozoa would be 283 

beneficial. 284 

 285 

With some fish species the pH of diluents is a major factor affecting spermatozoon motility, 286 

where a pH similar to or higher than that of seminal plasma promotes the activation and longevity of 287 

motility [58,77]. Because of few studies, the role of pH in spermatozoa motility in amphibians is not 288 

clear. Studies in Anurans show a higher pH 7.1-7.8 in spermic urine than that of urine (pH 6.7-6.8) [34]. 289 

In the Caudata, with A. davidianus an artificially high pH 7.0-7.5 [47,48] increased refrigerated storage 290 

life and low pH inhibited flagella movement, and in contrast the semen of Cryptobranchus had a low pH 291 

6.4 (unpublished), and where the highest motility of Axolotl spermatozoa was found at pH 10.0-12.0 292 

(Nabil Mansour personal communication). 293 

 294 

  Diluents are commonly mixed 1:1 by testis weight or semen volume to create sperm suspensions 295 

[50]. If spermatozoon suspensions are prepared from non-ionic diluents they will have only 50% of the 296 

original concentration of the various ions in testicular tissue, spermic urine, or semen. If sperm 297 

suspensions are prepared from ionic diluents the final concentration of ions in the suspensions will 298 

depend on the initial concentration of the diluent and the tissues or semen’s ionic concentration.   299 

 300 

4.2 Stimulants and antioxidants 301 

 302 

The stimulants caffeine and/or theophylline have been shown to increase the activation of Anuran 303 

spermatozoa [61,78]. The beneficial effects of these compounds on motility are likely the result of 304 

phosphodiesterase inhibition increasing levels of cyclic adenosine monophosphate, however, they may 305 

also influence spermatozoa motility and longevity as antioxidants by acting as antioxidants, and by 306 

suppressing reactive oxygen species formation within the sperm suspension [61]. The effects of other 307 

antioxidant compounds on Anuran spermatozoa have also been investigated, however, Vitamin C 308 

supplementation was detrimental and Vitamin E supplementation had no effect [79]. Pentoxyfylline did 309 

not increase the motility of fresh Xenopus spermatozoa [64].  310 

 311 

5. Sperm processing and refrigerated storage 312 
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 313 

Refrigeration at 4°C extends the storage life of spermatozoa by lowering metabolic rates, and most 314 

amphibian [53,80,81] and fish [82] spermatozoa largely tolerate refrigeration temperatures to above 315 

freezing. Anuran spermatozoa has retained moderate motility (10-20%) after refrigerated storage of 316 

testis in carcasses for 7 d [83], excised testes for 14 d [80,83], testicular macerates for between 14-317 

21 d [80], spermic urine for 7 d [40], and in the semen of a Cryptobranchid for 4.5 d [48], and in 318 

hormonally induced cloacal fluid from a Salamander for 3 d (Supplementary Table 2 [38]).   319 

 320 

5.1 Oxygenation 321 

 322 

Anuran spermatozoa uses both aerobic and anaerobic metabolism [67,84,85], whereas fish spermatozoa 323 

can only use aerobic metabolism [68,86]. Nevertheless, oxygenation extends the refrigerated storage life 324 

of spermatozoa in many fish species [87], however, in some species it decreases storage life and in 325 

others has no effect [86].  Increased oxygen concentration was shown to increase the refrigerated storage 326 

life of the spermatozoa of two anurans [85,88]. Oxidative damage to fish spermatozoa may be limited by 327 

components of seminal fluid [89], and this may also be the case with cryptobranchid spermatozoa in 328 

semen.    329 

 330 

5.2 Processing Osmolalities  331 

 332 

Spermatozoa are affected by varying osmolalities at various stages of processing, storage, activation, 333 

and fertilisation [1]. Spermatozoa suspensions whether created from testicular macerates [6,20], 334 

Cryptobranchid semen [47], salamander spermatophores [35] or cloacal fluid [37,39], or Anuran 335 

spermic urine [73], have high osmolalities. The greatest changes in osmolality between spermatozoa and 336 

diluents occur with the processing of spermic urine for refrigerated or cryopreserved storage, and after 337 

both refrigerated and cryopreserved storage when spermatozoa are equilibrated to recover motility [90]. 338 

 339 

5.3 Antibiotics and light 340 

 341 

The ability of antibiotics to increase the storage life of refrigerated spermatozoa is a balance between 342 

their efficacy and their toxicity with contrasting results in different species and studies. In fish, 343 
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antibiotics have been shown to improve the storage of spermatozoa in several species [91,92]. In 344 

contrast, the use of antibiotics (penicillin–streptomycin and gentamicin) in diluents reduced motility 345 

during the refrigerated storage of Anuran spermatozoa from spermic urine [85] and spermatozoa 346 

suspensions from testicular macerates [88]. Gentamicin in concentrations of up to 4 mg mL−1 did not 347 

affect the refrigerated storage life of spermatozoa in Anuran testicular macerates or in spermic urine, but 348 

did reduce bacterial contamination [46].  While there is currently no evidence that antibiotics increase 349 

the storage life of amphibian spermatozoa, antibiotics may inhibit bacteria and reduce the risk of 350 

pathogen transmission through stored samples [46]. In A. davidianus has strong light has been shown to 351 

decrease the longevity of fresh sperm [48].   352 

 353 

6. Sperm cryopreservation 354 

 355 

n response to the amphibian extinction crisis, the cryopreservation of testicular anuran spermatozoa with 356 

subsequent fertilization was achieved in the late-1990´s by independent research teams in the Russian 357 

Federation [93,94] and Australia [52]. Early studies compared a wide range of penetrating 358 

cryoprotectants between species, diluents, and processing methods [52,74,95,96,97,98,99,100,101] 359 

focussing on dimethyl sulphoxide (DMSO [52,97]), glycerol [52,97], and methanol [97]. By 2010, 360 

DMSO was the most consistent penetrating cryoprotectant in achieving post-thaw motile and fertile 361 

spermatozoa. To extend the collection of spermatozoa to non-lethal techniques, research then focussed 362 

on techniques for the cryopreservation of hormonally induced spermatozoa in spermic urine. Motility 363 

and fertilization with post-thaw spermatozoa from spermic urine was first achieved in 2011, with the 364 

novel penetrating cryoprotectant dimethyl formamide (DMFA) giving greater recovery than DMSO 365 

[73]. DMFA was then successfully used with four other phylogenetically diverse Anuran species, 366 

Pelophylax lessonae [40], Anaxyrus b. boreas and Lithobates sevosa [100] and Atelopus zeteki [101].  367 

 368 

Insert Fig. 5.  369 

 370 

The preparation of cryosuspensions involves the mixing of spermatozoa samples with 371 

cryodiluents (Fig. 4). Compounds in cryodiluents act in synergy to protect spermatozoa during the rigors 372 

of freezing and thawing. Cryodiluents are formulated from penetrating cryoprotectants and non-373 

penetrating cryoprotectants, and with amphibian spermatozoa now favour ionic/saccharide non-374 
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penetrating cryoprotectants. Both sucrose [40,64] and trehalose [100,101] as saccharide non-penetrating 375 

cryoprotectants have provided high post-thaw recovery.  376 

 377 

With fish spermatozoa, non-penetrating cryoprotectants including proteins, lipoproteins and 378 

lipids have increased plasma membrane resistance to osmotic stress along with post-thaw recovery 379 

[102,103,104]. With amphibians spermatozoa the inclusion of protein/lipids in cryodiluents provided 380 

high post-thaw recovery of viability in an Anuran [64], and in Caudata motility in Cryptobranchus (Dale 381 

McGinnity, unpublished data), and increased fertility in a Salamander [37]. A negative effect of a buffer 382 

was shown through a higher post-thaw recovery of the motility of Bufonid spermatozoa using DMSO 383 

alone than with the addition of HEPES buffer [40], while the addition of TRIS buffer did not affect the 384 

recovery of Xenopus spermatozoa [6].  385 

 386 

Concentrations of DMSO or DMFA between 5-10% (v/v) in cryosuspensions have proven the 387 

most successful for the cryopreservation of amphibians spermatozoa [6,20,40,52,73] with up to 15% 388 

concentration in a Litorid frog [105]. However, high concentrations of up to 15% DMSO have generally 389 

proven effective with fish. Glycerol [106], trehalose alone [107], and propylene glycol [108] have 390 

proven more effective than DMSO in some fish species and may be suitable for some amphibian 391 

species. In some Anurans, even low concentrations of DMSO reduce hatch rates [66], and with 392 

spermatozoa from spermic urine reduce fertility and larval survival [83]. In contrast, with Xenopus 393 

spermatozoa DMSO proved less toxic than glycerol [6]. In one species post-thaw motility was more 394 

highly correlated to fertilisation with glycerol in contrast to DMSO [105]. 395 

 396 

Cryosuspensions are generally refrigerated for ~10 min before freezing to equilibrate 397 

spermatozoa to penetrating cryoprotectants in a low temperature environment that reduces 398 

cryoprotectant toxicity [44,73,101]. The penetration rates of penetrating cryoprotectants vary widely, 399 

where DMSO reaches equilibrium with fishes spermatozoa within 10 s [109], but with the penetration 400 

rate of glycerol being much lower [100,111]. Longer equilibration periods may benefit some Anuran 401 

cryopreservation protocols and did not affect post-thaw recovery after 20 min [6], with some sperm 402 

recovering motility and fertility after 6 d of refrigerated storage [112]. Consequently, to enable more 403 

flexibility in the timing of techniques, and to facilitate the use of some slowly penetrating 404 

cryoprotectants, the equilibration period of refrigerated cryosuspensions may extend to 20 min or more. 405 
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 406 

6.1 Cooling rates and cryopreservation 407 

 408 

Samples can be frozen in the field using dry ice or through suspension into LN2 vapour, and in facilities 409 

also using -80°C or programmable freezers. We categorise freezing rates as very slow (10°C/min), slow 410 

(30°C/min), moderate (110°C/min), fast (300°C/min), very fast (1200°C/min) from a broad canvassing 411 

of the studies in Supplementary Table 2. Stepped freezing rates for amphibians spermatozoa have 412 

achieved high post-thaw recovery with testicular spermatozoa [20,99] and with spermatozoa from 413 

spermic urine (Supplementary Table 2. [73,100]). The cryopreservation of some fishes [113] and 414 

amphibians [52] spermatozoa is affected by changes in cooling rates as low as 5°C/min, and in these 415 

cases the use of programmable freezers may be necessary. 416 

 417 

 The spermatozoa of several Caudata families have proven amenable to cryopreservation at slow 418 

to fast cooling rates. With Axolotl spermatophores, cooling rates between ~10°C/min and ~300°C/min 419 

did not affect viability [35], and high post-thaw recovery was shown with Salamander sperm using 420 

stepped freezing [37]. The sperm of Cryptobranchus proved amenable to cryopreservation with the slow 421 

lowering of straws into a LN2 vapour (Dale McGinnity personal communication), but using a similar 422 

freezing method with Andrias only recovered <10% motility [47]. In fish optimal cooling rates are 423 

membrane lipid dependent [114,115] and this is expected to be the case with amphibian sperm. 424 

 425 

Sperm processing, activation, and fertilisation  426 

 427 

High levels of motility and fertility are recovered from cryopreserved amphibian sperm when thawed in 428 

a wide range of conditions from air at room temperature, to unheated tap water, to immersion into 37°C 429 

water baths (Supplementary Table 2, [6,100,101]). The first post-thaw recovery of hormonally induced 430 

Anuran sperm was achieved through a four-step osmotic equilibration process at 4°C [83], and with 431 

another Anuran the percentage activation, velocity, morphology, longevity, and DNA integrity were 432 

higher when spermatozoa were held at 4°C during the post-thaw processing. Therefore, once thawed as 433 

shown by the last remaining ice just thawing, cryosuspensions should be held as close to 4°C as 434 

possible. The period that post-thaw spermatozoa can be stored and maintain viability is unknown for 435 

most species, but with Xenopus last 20 min without any effect on fertilisation or embryo survival rates 436 

[6,44]. 437 
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 438 

The highest fertilization rates are achieved through high spermatozoa per an oocyte ratios. The 439 

general practice of the mixing of cryodiluents with sperm samples at a 1:1 ratio reduces spermatozoa 440 

concentration by 50%. For activation, these suspensions are then generally mixed at a ratio of 1:2 or 441 

more with water resulting in a further reduction of spermatozoa concentration to ~20% or less of the 442 

original sample [51,73]. This lowering of spermatozoa concentrations is particularly significant with low 443 

concentrations of hormonally induced spermatozoa and where fertilisation requires high sperm 444 

concentrations [73], and also where a significant percentage of sperm lyse or do not recover motility 445 

[53]. For the highest fertilisation rates, a process known as dry fertilisation is used where sperm 446 

suspensions are deposited directly onto oocytes and then after 5 to 10 min the oocytes are flooded with 447 

fresh water [52,75].  448 

 449 

7. Morphological integrity of sperm 450 

 451 

Many morphological deformations can be found in post-thaw amphibian spermatozoa, such as swelling 452 

or rupture of the plasma membrane, loss of the nuclear envelope, fracture of the perforatorium and 453 

axoneme, degeneration of the undulating membrane and disappearance of the mitochondrial ridge 454 

[48,115]. Morphological damage may be associated with impacts on post-thaw activation mechanisms 455 

where fish [116,117] or Anuran [53,112] spermatozoa are intact but unable to activate. The positive 456 

correspondence between high post-thaw plasma membrane integrity and fertilization rates was shown 457 

with Silurana tropicalis in contrast to low membrane integrity and fertilisation rates in Xenopus laevis 458 

[6,115]. 459 

 460 

Sperm DNA fragmentation (SDF) 461 

 462 

The main objective of spermatozoa storage is to provide unfragmented and viable genetic material to the 463 

oocyte upon fertilisation. Sperm DNA fragmentation (SDF) is a highly dynamic process that continues 464 

from spermatozoa collection until fertilization.  Evolutionary history, morphology and physiology of 465 

spermatozoon, and DNA-protein interactions, affect SDF during refrigerated storage, cryopreservation, 466 

and post-thaw activation [118].   467 

 468 
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Sperm DNA fragmentation interferes with syngamy and embryonic development in fish [118]. 469 

However, to date there are only seven research publications of SDF in amphibians; R. temporaria sperm 470 

stored in refrigerated carcasses [83], refrigerated storage in testes or macerates in X. laevis and S. 471 

tropicalis [6,115,119], and the fresh hormonally induced and cryopreserved spermatozoa of A. zeteki 472 

[44,101] and Epidalea calamata [120].  Sperm DNA fragmentation increased and fertilization rates 473 

decreased during refrigerated storage of anuran sperm in carcasses [83], in spermic urine [45,101], and 474 

in post-thaw spermatozoa [101,115]. However, SDF was not a predictor of survival rates from first 475 

cleavage oocytes [6,83]. Sperm DNA fragmentation in post-thaw spermatozoa was higher in seasonally 476 

collected spermatozoa than in unseasonal spermatozoa, but also did not correspond to reduced embryo 477 

survival [120].  478 

 479 

9. Phylogenetic patterns in sperm induction and amenability to storage  480 

 481 

Phylogeny and environment interact to mold the reproductive strategies of amphibians [2,24,33]. Most 482 

studies of amphibian spermatozoa collection and storage are on Anurans from regions in the temperate 483 

zones of Australia, or the cool to warm temperate zones of Europe and North America (Supplementary 484 

Table 1, 2). Southern Australia, has a cool to warm climate with stochastic seasonal rainfall and has 485 

more studies of Anurans than any other region. In this climate Anurans generally reproduce over 486 

extended seasonal periods (Supplementary Table 3. [22]). Recent developments of cryopreservation 487 

techniques for fish spermatozoa have also focused on species from temperate climates and with seasonal 488 

reproduction, including numerous studies in Brazil [104].  489 

 490 

More studies over a wider range of families, and species within families, are needed to reveal 491 

phylogenetic patterns in species amenability to spermatozoa cryopreservation Spermatozoa 492 

cryopreservation has been trialed in 2 Bufonid species and 6 Ranid from the cool to warm temperate 493 

zones of Eurasia and North America; and in 3 Bufonid species, 2 Hylid and 1 Eleutherodactylid from the 494 

tropical and subtropical zones of South and Central America (Supplementary Table 3). Although 495 

Bufonidae and Hylidae are sister clades, there were different responses to similar protocols, showing 496 

high recovery for Bufonid spermatozoa [44] and low recovery for Hylid spermatozoa (Belin Proaño and 497 

Oscar D. Pérez, personal communication). In contrast, the spermatozoa of both Ranids and Bufonids, 498 

which diverged 170mya [121], are amenable to cryopreservation. However, Pelodryadid sperm showed 499 

greater amenability to cryopreservation than Myobatrachid sperm [98], where Pelodryadids diverged 500 
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from the Myobatrachids 140 mya [122,123], and with no difference between spermatozoa from two 501 

Myobatrachid subfamilies that diverged 70 mya [99,123].  502 

 503 

The Pipidae genera Silurana and Xenopus diverged only 20-40 mya [124], however, post-thaw 504 

S. tropicalis sperm retains higher motility, membrane and DNA integrity than X. laevis sperm [15]. The 505 

two species of Pipidae (sub-order Mesobatrachia) in which cryopreservation has been trialed, are 506 

phylogenetically distant from other trialed anurans which are all from the Neobatrachidae, and in 507 

contrast to the spermatozoa of Neobatrachia the spermatozoa of both Pipidae species successfully 508 

cryopreserves in an ionic/sucrose diluent alone [6].  509 

 510 

Insert Fig. 6.  511 

 512 

A possible relationship between amphibians climatic range and the amenability of Anuran 513 

spermatozoa to cryopreservation was shown where the spermatozoa of freeze-tolerant wood frogs Rana 514 

sylvatica had a much higher post-thaw recovery than the more temperate climate leopard frogs R. 515 

pipiens and American toads A.  americanus (Fig. 6, [125]) but this concept remains to be investigated 516 

over a wider range of species. Caudate spermatozoa from two distantly related families has been 517 

successfully cryopreserved in the Cryptobranchidae (Dale McGinnity personal communication, [46]) 518 

and the Ambystomatida [35,36]. Phylogenetic atterns of spermatozoa cryopreservation still need to be 519 

established in the remaining eight Caudate families.  520 

   521 

10. Evaluation of techniques and their standardization  522 

 523 

The development of techniques for the collection, processing, and storage of amphibians spermatozoa 524 

depend on assessing spermatozoa quality through standardised metrics. In fishes, percentage motility 525 

and velocity [82], and plasma membrane integrity [115,126], have mainly been used as metrics of 526 

spermatozoa quality, with far fewer studies extending to fertility and development [127]. Research on 527 

Anurans spermatozoa has generally used percentage motility and velocity as a metric [61,87,128], 528 

though a number of studies have used live/dead (viability) stains [27,29,31], and to a lesser extent 529 

fertility and development depending on the study goals and the availability of oocytes [34,73,83,100]. 530 

With Anurans, two recent Proof of Concept Studies used cryopreserved spermatozoa to produce mature 531 
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adults [6,20]. The post-thaw recovery of Caudate spermatozoa from semen has been assessed by fertility 532 

and development to mature adults (Dale McGinnity personal communication, [37]), and from 533 

spermatophores by live/dead stains [35]. However, vital stains may not always be reliable when 534 

assessing the membrane integrity of spermatozoa in spermatophores (Manuel Gonzalez pers. 535 

communication. Fig. 7.). 536 

 537 

Insert Fig. 7.  538 

 539 

 540 

To further the development of both research and practical application, at each stage of processing the 541 

quality of spermatozoa should be assessed by standardized methods for percentage of activation, 542 

velocity, period of motility, concentration and volume. Any procedures to induce spermatozoa or 543 

oocytes should be recorded including the body length, weight, age, and reproductive condition of males, 544 

and testes weight when collecting testicular spermatozoa. Spermatozoa suspensions can be measured for 545 

pH, osmolality, and ionic composition. If a study includes spermatozoa morphology, where possible the 546 

cataloguing of images from both stained slides and electron microscopy should be undertaken.  547 

 548 

Some studies have shown an unexpected lowering of spermatozoa concentration during processing and 549 

storage [24] and a better understanding of the extent and nature of these lysed and missing spermatozoa 550 

is needed. Fertilization techniques should be quantified in terms of the number of spermatozoa used for 551 

specific numbers of oocytes (e.g. sperm-to-oocyte ratio), the associated water volumes and 552 

concentrations, gamete holding times, and protocols used for activation of the gametes. 553 

 554 

The percentage activation, motility, and also the velocity of spermatozoa can be assessed by observers 555 

using phase contrast microscopes, or more accurately percentage motility and velocity by Computer 556 

Assisted Sperm Analysis (CASA). CASA objectively measures the percentage of motile spermatozoa 557 

and their various types of velocity [82] and analyses the resultant data with a sophisticated statistical 558 

programs. In almost all cases, CASA systems rely on head movement of spermatozoa, and free software 559 

developed for fish spermatozoa is also suitable for amphibian spermatozoa as a plug-in of ImageJ 560 

software [129]. 561 

 562 

11. Application of amphibian sperm banks 563 
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 564 

Amphibians produced by in vitro fertilisation have been released in supplementation programs (Robert 565 

Browne, personal communication), and refrigerated spermatozoa transported between facilities to 566 

successfully fertilise oocytes [130], but no amphibians from cryopreserved spermatozoa have been 567 

released. In contrast, fish aquaculture has a long history with the use of in vitro fertilization since 600 568 

BC in mainland China (Fan-Li The Art of Fish-Breeding 600 BC), and has been widely used globally 569 

for the restocking of fish since the mid-20th century [131].  570 

 571 

Although the spermatozoa of 200 aquaculture and 60 threatened species has been cryopreserved 572 

[132] it has only had limited use in practice especially for threatened populations [5,133]. For example, 573 

cryopreserved spermatozoa have been used in a CBP for marble trout (Salmo marmoratus) to maintain 574 

pure strains [5], and pallid sturgeon (Scaphirhynchus albus) juveniles included in general releases 575 

(William Wayman, personal communication).  576 

 577 

The concept of sperm banks to support CBPs for select species is separate from archival genetic 578 

resource banking (AGRB) for the widest range of possible species for taxonomic and other purposes. 579 

The banking of amphibian spermatozoa requires cryopreservation, whereas, AGRB for taxonomic 580 

purposes requires the storage of samples, preferably including the whole specimen, at room temperature. 581 

In contrast to the indefinite storage period of AGRB, the storage period and the use of cryopreserved 582 

spermatozoa must be defined within a Sustainable Management Plan. Limited resources must be focused 583 

on species where the programs goal is the reestablishment of genetically varied populations in nature, 584 

with these examples then extending to the broader amphibian CBP community. Not all CBPs will 585 

require the use of cryopreserved spermatozoa [104] including those where genetically varied populations 586 

may be rebuilt without the use of cryopreserved spermatozoa. At an extreme, access to cryopreserved 587 

spermatozoa alone is useless if females are not available.  588 

 589 

There are many fish sperm banks in Europe, Brazil, Mexico, USA, and Canada that are mostly 590 

dedicated to commercial fish, but between them and others globally house sperm samples from hundreds 591 

of threatened species. Some of these collections include spermatozoa from species that were common at 592 

the time of collection but are now endangered or extinct (see review [104]). Sperm banking should be 593 

based on forming links and partnerships, between the target CBP and other participating entities 594 
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including civil and governmental institutions, within a framework of overlapping and shared interests. 595 

The establishment of communication networks and information portals, along with standardization of 596 

terminologies and lexicon provide for efficient communication [104].  597 

 598 

Future expansion of the use of cryopreserved spermatozoa for aquatic species in aquaculture and 599 

will mostly be based on advances in high-throughput cryopreservation and commercial-scale application 600 

[134,135]). With amphibians the optimal cryopreservation protocol will vary dependent on the species, 601 

however, as the field develops greater standardization of protocols for at least each species will be 602 

advantageous [104,134], through increasing offspring production, and minimizing variability and the 603 

waste of samples (Fig. 8).  604 

 605 

Insert Fig. 8.  606 

 607 

 Lifecycle Proof of Concept studies (Fig. 8. [18]) should now be integrated within select CBPs; 608 

based on the species conservation status, CBP facilities ability to complete the lifecycle, and the 609 

potential for release into their natural environment. Complete integration requires three stages, the 610 

development of appropriate technologies, funding for the establishment and maintenance of sperm 611 

banks, and the integration of sperm banks into CBPs.   612 

 613 

The minimum number of males needed for CBP to maintain 90% of a species genetic variation 614 

in a 55 year CBP is 75 males, with numbers dramatically increasing with shorter generation times and 615 

lower longevity [136]. The cost of sperm banking depends on the scale where the minimum of one 616 

cryostorage container can house many hundreds of samples, and as storage capacity increase the storage 617 

costs per sample lowers and costs for other capital items such as a microscope stay static. The location 618 

of facilities in the low income regions of the highest amphibian biodiversity will generally lower labour 619 

costs [104]. The estimated total costs for sperm processing, cryopreservation, and storage of each 620 

sample in the USA, based on Caffey and Tiersch [135], is $5.00 USD for the first year and less for 621 

subsequent years. The initial part of this cost for processing will be species specific, but in any case the 622 

cost of sperm banking is one to two orders of magnitude less than keeping live males and more secure.  623 

 624 
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The development of techniques for the cryopreservation of amphibian sperm have almost 625 

exclusively been in moderate to high income industrialised countries, except recently for three anuran 626 

species in Ecuador (Belin Proaño and Oscar D. Pérez, personal communication, [44]). Yet most 627 

amphibian species, except SE North America and eastern Australia, are found in the low to moderate 628 

income countries of Central and South America, SE Asia, New Guinea, Africa and Madagascar (Fig. 9).  629 

Most currently threatened amphibians come from Central and South America (Fig 9. [137]).  630 

 631 

Insert Fig. 9.  632 

 633 

Sperm banks and CBPs are ideally be located within species range, where males can be sampled 634 

opportunistically, cumbersome legislation regarding spermatozoa transport between facilities does not 635 

apply, and the CBP relates to the general sustainable management of the regional environment. 636 

However, the number of institutionally supported CBPs in or out of range countries can only support 637 

about 10% of species in need of conservation actions. Private keepers CBPs in or out of range offer an 638 

opportunity to prevent the extinction of the 90% of neglected amphibian species, along with supporting 639 

in range CBPs, habitat protection and restoration, and increasing public perception and political 640 

influence for the sustainable management of amphibian biodiversity [138].  641 

 642 

12. Conclusion and future directions 643 

 644 

There is an increasing need for the storage of spermatozoa in the sustainable management of amphibian 645 

biodiversity. Techniques for the use of cryopreserved spermatozoa are developed and there is no 646 

technical reason that sperm banking cannot be implemented for many species programs.  Considering 647 

the depth of the amphibian conservation crisis it is imperative to develop ¨Proof of Concept Projects¨ for 648 

the use of cryopreserved spermatozoa in CBPs, and that broadly engage the global amphibian 649 

conservation community and promote the sustainable management of the environment in general.  650 

 651 

Techniques for the collection and refrigerated storage of amphibian spermatozoa are well 652 

advanced in the Anura and Caudata, but neglected in the Sirenidae and Caecilians. Sperm banking must 653 

embrace the diversity of reproductive modes in amphibians, and further develop techniques to optimize 654 

the cryopreservation of their spermatozoa. Patterns between species phylogeny, their evolutionary 655 
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history, and reproductive modes will lead to more generalized concepts regarding the cryopreservation 656 

of amphibian spermatozoa. This progress will be furthered by a greater understanding of the critical 657 

components of protocols, and a greater standardization of methods to enable more meaningful 658 

comparisons between studies and to focus on critical points in the cryopreservation process.  659 

 660 
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Legends for Figures 1026 

 1027 

Fig. 1. The rapid effects of selection in captive breeding are shown in these colour varieties of the 1028 

Chinese giant salamander (Andrias davidianus) which now has more than 12 × 106 individuals in 1029 

aquaculture, mostly hybrids between 5 recently revealed cryptic species. Image Robert Browne. 1030 

 1031 

Fig.  2. The evolutionary relationships between major amphibian clades, orders, families and species 1032 

with respect to major parameters informing an understanding of sperm storage and cryopreservation. 1033 

Studies may have included more than one species, and the assessment methods are for all studies of each 1034 

species (see Supplementary Table 2,3 for more detail). Blue = External fertilisation, Red = Internal 1035 

fertilisation. 1036 

 1037 

Fig. 3. Hormonal stimulation and sperm collection in the Panamanian Golden Frog (Atelopus zeteki). A. 1038 

Intraperitoneal injection of GnRHa; B. Spermic urine collection by abdominal massage; and C. Spermic 1039 

urine collection by gentle insertion of a catheter in the cloacae. Image Gina Della Togna.   1040 

 1041 

Fig. 4. A. Collecting semen from a cryptobranchid, Cryptobranchus alleganiensis, through abdominal 1042 

massage at Nashville Zoo, USA. Image Robert Browne; and B) hormonally induced tiger salamander, 1043 

Amystoma tigrinium, semen from the cloaca at National Amphibian Conservation Center Detroit 1044 

Zoological Society, Detroit, USA. Image Ruth Marcec. 1045 

 1046 

Fig. 5. A flow diagram of the different stages in the collection, preparation of cryosuspensions, 1047 

acclimation, and freezing of amphibian sperm as reported across various amphibian studies 1048 

(Supplementary Table 2,3). Temperatures in °C.  Neurergus kaiseri. Image Richard Bartlett 1049 

http://news.mongabay.com/2010/0208-hance_luristannewt.html   1050 

 1051 

Fig. 6. The phylogenetic relationship between four anuran families, with the Pipidae diverging form the 1052 

others 210 mya, the Ranidae from the Hylidae and Bufonidae 170 mya, and the Hylidae and 1053 

Bufonidae diverging 70 mya (Adapted from Brelsford et al. [119]).   1054 

 1055 

http://news.mongabay.com/2010/0208-hance_luristannewt.html
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Fig. 7. A. Ambystoma mexicanum sperm stained with eosin nigrosin, 40× magnification. B. Ambystoma 1056 

spermatophore stained with Trypan Blue. Glycoproteins on the spermatophore highly stain but the 1057 

sperm package is intact to the vital stain and the enclosed sperm do not stain, and C. Hoesch staining is 1058 

used to test acrosomal integrity. Image Manuel Gonzalez.    1059 

 1060 

Fig. 8. Flow chart of suggested Proof of Concept study to complete the life cycle of a threatened species 1061 

using cryopreserved sperm in a CBP. Warm temperatures in brown, and cool and colder temperatures in 1062 

blue. Image Robert Browne. 1063 

 1064 

Fig. 9. Global diversity of amphibian species, the distribution of threatened amphibians, average income, 1065 

and the locations of research for the collection and storage of amphibian sperm for the sustainable 1066 

management of amphibian biodiversity. Anurans (black circles) and Caudata (Yellow circles). Both 1067 

Anura and Caudata are found in Australia, but only Anura are native. The size of circles roughly 1068 

approximates research on sperm storage. 1069 
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