16 research outputs found

    The major brain cholesterol metabolite 24(s)-hydroxycholesterol is a potent allosteric modulator of N-methyl-d-aspartate receptors

    Get PDF
    N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that are critical to the regulation of excitatory synaptic function in the CNS. NMDARs govern experience-dependent synaptic plasticity and have been implicated in the pathophysiology of various neuropsychiatric disorders including the cognitive deficits of schizophrenia and certain forms of autism. Certain neurosteroids modulate NMDARs experimentally but their low potency, poor selectivity, and very low brain concentrations make them poor candidates as endogenous ligands or therapeutic agents. Here we show that the major brain-derived cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlap that of other allosteric modulators. At submicromolar concentrations 24(S)-HC potentiates NMDAR-mediated EPSCs in rat hippocampal neurons but fails to affect AMPAR or GABA(A) receptors (GABA(A)Rs)-mediated responses. Cholesterol itself and other naturally occurring oxysterols present in brain do not modulate NMDARs at concentrations ≤10 μm. In hippocampal slices, 24(S)-HC enhances the ability of subthreshold stimuli to induce long-term potentiation (LTP). 24(S)-HC also reverses hippocampal LTP deficits induced by the NMDAR channel blocker ketamine. Finally, we show that synthetic drug-like derivatives of 24(S)-HC, which potently enhance NMDAR-mediated EPSCs and LTP, restore behavioral and cognitive deficits in rodents treated with NMDAR channel blockers. Thus, 24(S)-HC may function as an endogenous modulator of NMDARs acting at a novel oxysterol modulatory site that also represents a target for therapeutic drug development

    Vascular retinal findings after COVID-19 vaccination in 11 cases: a coincidence or consequence?

    Get PDF
    Purpose: The primary purpose of this study was to assess vascular retinal findings temporally related to COVID-19 vaccination. With greater information regarding all possible future adverse events, we hope to understand the real dimension and relevance of what was presented. Methods: Eleven patients with visual complaints after COVID-19 vaccination were enrolled. Data on the following were included: age, sex, vaccine, time of symptom onset, systemic findings, medical history, best-corrected visual acuity, and ocular findings by slit-lamp biomicroscopy as well as multimodal retinal imaging (color fundus, red-free photography, spectral-domain optical coherence tomography, optical coherence tomography angiography, and fluorescein-angiography). Inclusion criteria were the presence of ophthalmologic signs within 30 days after the first or second dose of any COVID-19 vaccine. Results: Of 11 patients, five had arterial occlusion (45.4%), four had venous occlusion (36.4%), and two (18.2%) had nonspecific vascular alterations suggestive of retinal ischemia such as cotton-wool spots. The mean age was 57 (SD = 16; range: 27-84) years. The mean time of symptoms onset was 10 (SD = 5.4; range: 3-16) days. Nine patients were female (81.8%). Systemic risk factors were observed in 36.4% of patients. Two patients had both neurological and visual symptoms, with arterial occlusion. Overall, 36.4% patients had COVID-19 in the previous year. Seven patients (63.6%) received ChAdOx1 nCoV- 19 (AZD1222) vaccine. Conclusions: Our data suggest that retinal events temporally related to COVID-19 vaccination are possible but are very rare. The relationship of these events with post-COVID-19 vaccination warrants further attention to derive a meaningful conclusion.RESUMO Objetivos: o principal objetivo deste estudo foi descrever pacientes com achados vasculares retinianos temporalmente relacionados à vacinação contra COVID-19. Com maior notificação de possíveis eventos adversos similares, esperamos compreender a real dimensão e relevância do que foi apresentado. Métodos: Onze pacientes com queixas visuais após vacinação contra COVID-19 foram estudados. Os dados analisados foram: idade, gênero, tipo de vacinação, tempo de aparecimento de sintomas, achados sistêmicos, antecedentes pessoais, acuidade visual com melhor correção, biomicroscopia e imagem retiniana multimodal (retinografia colorida, red-free, SD-OCT, OCTA e angiofluoresceinografia). Os critérios de inclusão foram a presença de alterações oftalmológicas ocorridas dentro de 30 dias após a primeira ou segunda dose de qualquer vacina contra COVID-19. Resultados: Onze pacientes foram incluídos: 5 com oclusão arterial (45,4%), 4 com oclusão venosa (36,4%) e 2 (18,2%) com alterações não específicas vasculares sugestivas de isquemia retiniana como exsudatos algodonosos. A idade média dos pacientes foi de 57 anos (DP=16; com intervalo de 27 a 84 anos). A média de tempo de aparecimento de sintomas após a vacinação foi de 10 dias (DP=5,4; com intervalo de 3 a 16 dias). Nove dos onze pacientes eram do sexo feminino (81,8%). Fatores de risco sistêmicos foram observados em 36,4% dos pacientes. Dois pacientes tiveram sintomas neurológicos e visuais, com oclusão arterial. 36,4% dos pacientes tiveram infecção prévia por COVID-19 no último ano. Sete pacientes (63,6%) receberam a vacina ChAdOx1 nCoV-19 (AZD1222). Conclusões: nossos dados sugerem que eventos retinianos temporalmente relacionados à vacinação contra COVID-19 são possíveis, porém raros. A relação entre estes eventos pós-vacinais exigem futura atenção antes de maiores conclusões

    DNA Damage and Reactive Nitrogen Species are Barriers to Vibrio cholerae Colonization of the Infant Mouse Intestine

    Get PDF
    Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants

    Análise de trilha de componentes de produção primários e secundários em tomateiro do grupo Salada

    Get PDF
    O objetivo deste trabalho foi avaliar as correlações genotípicas e seus desdobramentos em efeitos diretos e indiretos de componentes de produção primários e secundários sobre a produtividade de frutos em acessos de tomateiro, pela análise de trilha. Foram utilizados dados de 20 características, avaliadas em 132 acessos de tomateiro do grupo Salada, do Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa. Após o diagnóstico de multicolinearidade, oito características foram descartadas, e a análise de trilha foi realizada com: variável principal (produção total de frutos); variáveis primárias (peso médio e número total de frutos); e variáveis secundárias (frutos não comercializáveis, índice de precocidade, comprimento da folha, espessura do pecíolo principal, comprimento e diâmetro do entrenó, número de lóculos, acidez total e sólidos solúveis totais dos frutos). O comprimento da folha, o índice de precocidade e o diâmetro do entrenó apresentaram maior correlação genotípica com a produção total de frutos (0,69; -0,54 e 0,5, respectivamente). A análise de trilha com um único diagrama causal mostrou igual importância das variáveis primárias na determinação da produção. A análise de trilha com dois diagramas causais mostrou que a seleção simultânea do comprimento da folha e do diâmetro do entrenó pode ser uma boa alternativa para a obtenção de ganhos na produção total de frutos

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Npas4 Regulates a Transcriptional Program in CA3 Required for Contextual Memory Formation

    No full text
    available in PMC 2014 May 29The rapid encoding of contextual memory requires the CA3 region of the hippocampus, but the necessary genetic pathways remain unclear. We found that the activity-dependent transcription factor Npas4 regulates a transcriptional program in CA3 that is required for contextual memory formation. Npas4 was specifically expressed in CA3 after contextual learning. Global knockout or selective deletion of Npas4 in CA3 both resulted in impaired contextual memory, and restoration of Npas4 in CA3 was sufficient to reverse the deficit in global knockout mice. By recruiting RNA polymerase II to promoters and enhancers of target genes, Npas4 regulates a learning-specific transcriptional program in CA3 that includes many well-known activity-regulated genes, which suggests that Npas4 is a master regulator of activity-regulated gene programs and is central to memory formation.McGovern Institute for Brain Research at MITMassachusetts Institute of Technology (MIT Presidential Marcus Fellowship to Honor Norman B. Leventhal)Massachusetts Institute of Technology. Simons Center for the Social BrainNational Science Foundation (U.S.) (NSF grant IOS 0919159)Whitehall Foundation (research grant)Anonymous FoundationJohn Merck Fund (John Merck Scholars Program)National Institutes of Health (U.S.) (NIH grant MH091220-01

    T‐type calcium channels as therapeutic targets in essential tremor and Parkinson's disease

    No full text
    Abstract Neuronal action potential firing patterns are key components of healthy brain function. Importantly, restoring dysregulated neuronal firing patterns has the potential to be a promising strategy in the development of novel therapeutics for disorders of the central nervous system. Here, we review the pathophysiology of essential tremor and Parkinson's disease, the two most common movement disorders, with a focus on mechanisms underlying the genesis of abnormal firing patterns in the implicated neural circuits. Aberrant burst firing of neurons in the cerebello‐thalamo‐cortical and basal ganglia‐thalamo‐cortical circuits contribute to the clinical symptoms of essential tremor and Parkinson's disease, respectively, and T‐type calcium channels play a key role in regulating this activity in both the disorders. Accordingly, modulating T‐type calcium channel activity has received attention as a potentially promising therapeutic approach to normalize abnormal burst firing in these diseases. In this review, we explore the evidence supporting the theory that T‐type calcium channel blockers can ameliorate the pathophysiologic mechanisms underlying essential tremor and Parkinson's disease, furthering the case for clinical investigation of these compounds. We conclude with key considerations for future investigational efforts, providing a critical framework for the development of much needed agents capable of targeting the dysfunctional circuitry underlying movement disorders such as essential tremor, Parkinson's disease, and beyond

    High-performance genetically targetable optical neural silencing by proton pumps

    No full text
    The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch)1 from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2, 3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue–green light-drivable proton pump from the fungus Leptosphaeria maculans4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of ‘optogenetic’ voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.National Institutes of Health (U.S.) (NIH Director's New Innovator Award (DP2 OD002002-01))National Institutes of Health (U.S.) (grant 0835878)National Science Foundation (U.S.) (grant 0848804)McGovern Institute for Brain Research at MIT (Neurotechnology Award Program)National Institutes of Health (U.S.) (NIH 1K99MH085944)Alfred P. Sloan FoundationUnited States. Dept. of DefenseDr. Gerald Burnett and Marjorie BurnettSFN Research Award for Innovation in NeuroscienceMassachusetts Institute of Technology. Media LaboratoryBenesse FoundationWallace H. Coulter FoundationHelen Hay Whitney FoundationBrain & Behavior Research Foundatio

    Neuroactive Steroids. 1. Positive Allosteric Modulators of the (γ-Aminobutyric Acid)<sub>A</sub> Receptor: Structure–Activity Relationships of Heterocyclic Substitution at C‑21

    No full text
    Neuroactive steroids (NASs) have been shown to impact central nervous system (CNS) function through positive allosteric modulation of the GABA<sub>A</sub> receptor (GABA<sub>A</sub>-R). Herein we report the effects on the activity and pharmacokinetic properties of a series of nor-19 pregnanolone analogues bearing a heterocyclic substituent at C-21. These efforts resulted in the identification of SGE-516, a balanced synaptic/extrasynaptic GABA<sub>A</sub> receptor modulator, and SGE-872, a selective extrasynaptic GABA<sub>A</sub> receptor modulator. Both molecules possess excellent druglike properties, making them advanced leads for oral delivery of GABA<sub>A</sub> receptor modulators
    corecore