763 research outputs found

    Depth-resolved particle associated microbial respiration in the northeast Atlantic

    Get PDF
    Atmospheric levels of carbon dioxide are tightly linked to the depth at which sinking particulate organic carbon (POC) is remineralised in the ocean. Rapid attenuation of downward POC flux typically occurs in the upper mesopelagic (top few hundred metres of the water column), with much slower loss rates deeper in the ocean. Currently, we lack understanding of the processes that drive POC attenuation, resulting in large uncertainties in the mesopelagic carbon budget. Attempts to balance the POC supply to the mesopelagic with respiration by zooplankton and microbes rarely succeed. Where a balance has been found, depth-resolved estimates reveal large compensating imbalances in the upper and lower mesopelagic. In particular, it has been suggested that respiration by free-living microbes and zooplankton in the upper mesopelagic are too low to explain the observed flux attenuation of POC within this layer. We test the hypothesis that particle-associated microbes contribute significantly to community respiration in the mesopelagic, measuring particle-associated microbial respiration of POC in the northeast Atlantic through shipboard measurements on individual marine snow aggregates collected at depth (36–500 m). We find very low rates of both absolute and carbon-specific particle-associated microbial respiration (< 3 % d−1), suggesting that this term cannot solve imbalances in the upper mesopelagic POC budget. The relative importance of particle-associated microbial respiration increases with depth, accounting for up to 33 % of POC loss in the mid-mesopelagic (128–500 m). We suggest that POC attenuation in the upper mesopelagic (36–128 m) is driven by the transformation of large, fast-sinking particles to smaller, slow-sinking and suspended particles via processes such as zooplankton fragmentation and solubilisation, and that this shift to non-sinking POC may help to explain imbalances in the mesopelagic carbon budget

    Crystal growth furnace safety system validation

    Get PDF
    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC)

    Clinical significance of medial vs lateral compartment patellofemoral osteoarthritis: cross-sectional analyses in an adult population with knee pain

    Get PDF
    Objective To determine the comparative prevalence, associations with selected patient characteristics, and clinical outcomes of medial and lateral compartment patellofemoral (PF) joint osteoarthritis (OA). Methods Information was collected by questionnaires, clinical assessment, and radiographs from 745 eligible community‐dwelling symptomatic adults age ≥50 years. PF joint space narrowing (JSN) and osteophytes were scored from skyline radiographs using the Osteoarthritis Research Society International atlas. Multilevel models were used to assess associations of compartmental PF joint OA with age, sex, body mass index (BMI) and varus–valgus malalignment, while median regression was used to examine associations with clinical outcomes (current pain intensity on a numeric rating scale [0–10] and the function subscale of the Western Ontario and McMaster Universities Osteoarthritis Index [0–68]). Results Isolated lateral PF joint OA was more common than isolated medial PF joint OA, particularly at higher severity thresholds. Irrespective of severity threshold, age (≥2 odds ratio [OR] 1.19 [95% confidence interval (95% CI) 1.12, 1.26]), BMI (≥2 OR 1.15 [95% CI 1.07, 1.24]), and valgus malalignment (≥2 OR 2.58 [95% CI 1.09, 6.07]) were associated with increased odds of isolated lateral JSN, but isolated medial JSN was only associated with age (≥2 OR 1.20 [95% CI 1.14, 1.27]). The pattern of association was less clear for PF joint osteophytes. Isolated lateral PF joint OA, defined by JSN or osteophytes, was associated with higher pain scores than isolated medial PF joint OA, but these differences were modest and were not significant. A similar pattern of association was seen for functional limitation but only when PF joint OA was defined by JSN. Conclusion Isolated lateral PF joint OA is more common than isolated medial PF joint OA, and it is more consistently associated with established OA risk factors. It is also associated with higher, but clinically nonsignificant, pain and function scores than isolated medial PF joint OA, particularly when PF joint OA is defined using JSN

    Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules

    Get PDF
    OBJECTIVES: Investigate the effect of a novel Bayesian penalised likelihood (BPL) reconstruction algorithm on analysis of pulmonary nodules examined with 18F-FDG PET/CT, and to determine its effect on small, sub-10-mm nodules. METHODS: 18F-FDG PET/CTs performed for nodule evaluation in 104 patients (121 nodules) were retrospectively reconstructed using the new algorithm, and compared to time-of-flight ordered subset expectation maximisation (OSEM) reconstruction. Nodule and background parameters were analysed semi-quantitatively and visually. RESULTS: BPL compared to OSEM resulted in statistically significant increases in nodule SUV(max) (mean 5.3 to 8.1, p < 0.00001), signal-to-background (mean 3.6 to 5.3, p < 0.00001) and signal-to-noise (mean 24 to 41, p < 0.00001). Mean percentage increase in SUV(max) (%ΔSUV(max)) was significantly higher in nodules ≤10 mm (n = 31, mean 73 %) compared to >10 mm (n = 90, mean 42 %) (p = 0.025). Increase in signal-to-noise was higher in nodules ≤10 mm (224 %, mean 12 to 27) compared to >10 mm (165 %, mean 28 to 46). When applying optimum SUV(max) thresholds for detecting malignancy, the sensitivity and accuracy increased using BPL, with the greatest improvements in nodules ≤10 mm. CONCLUSION: BPL results in a significant increase in signal-to-background and signal-to-noise compared to OSEM. When semi-quantitative analyses to diagnose malignancy are applied, higher SUV(max) thresholds may be warranted owing to the SUV(max) increase compared to OSEM. KEY POINTS: • Novel Bayesian penalised likelihood PET reconstruction was applied for lung nodule evaluation. • This was compared to current standard of care OSEM reconstruction. • The novel reconstruction generated significant increases in lung nodule signal-to-background and signal-to-noise. • These increases were highest in small, sub-10-mm pulmonary nodules. • Higher SUV(max)thresholds may be warranted when using semi-quantitative analyses to diagnose malignancy

    18F-FDG PET/CT assessment of histopathologically confirmed mediastinal lymph nodes in non-small cell lung cancer using a penalised likelihood reconstruction

    Get PDF
    Purpose To investigate whether using a Bayesian penalised likelihood reconstruction (BPL) improves signal-to-background (SBR), signal-to-noise (SNR) and SUVmax when evaluating mediastinal nodal disease in non-small cell lung cancer (NSCLC) compared to ordered subset expectation maximum (OSEM) reconstruction. Materials and methods 18F-FDG PET/CT scans for NSCLC staging in 47 patients (112 nodal stations with histopathological confirmation) were reconstructed using BPL and compared to OSEM. Node and multiple background SUV parameters were analysed semi-quantitatively and visually. Results Comparing BPL to OSEM, there were significant increases in SUVmax (mean 3.2–4.0, p<0.0001), SBR (mean 2.2–2.6, p<0.0001) and SNR (mean 27.7–40.9, p<0.0001). Mean background SNR on OSEM was 10.4 (range 7.6–14.0), increasing to 12.4 (range 8.2–16.7, p<0.0001). Changes in background SUVs were minimal (largest mean difference 0.17 for liver SUVmean, p<0.001). There was no significant difference between either algorithm on receiver operating characteristic analysis (p=0.26), although on visual analysis, there was an increase in sensitivity and small decrease in specificity and accuracy on BPL. Conclusion BPL increases SBR, SNR and SUVmax of mediastinal nodes in NSCLC compared to OSEM, but did not improve the accuracy for determining nodal involvement

    Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

    Full text link
    We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are produced by a radio source occulted by a moving flux rope depending on its orientation. These curves are consistent with the Helios observations, providing evidence for the flux-rope geometry of CMEs. Many background radio sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope that the magnetic field orientation and helicity of the flux rope can be determined 2-3 days before it reaches Earth, which is of crucial importance for space weather forecasting. An FR calculation based on global magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows that FR mapping can also resolve a CME geometry curved back to the Sun. We discuss implementation of the method using data from the Mileura Widefield Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.

    Interstitial lung disease is a risk factor for ischaemic heart disease and myocardial infarction.

    Get PDF
    OBJECTIVES: Despite many shared risk factors and pathophysiological pathways, the risk of ischaemic heart disease (IHD) and myocardial infarction (MI) in interstitial lung disease (ILD) remains poorly understood. This lack of data could be preventing patients who may benefit from screening for these cardiovascular diseases from receiving it. METHODS: A population-based cohort study used electronic patient records from the Clinical Practice Research Datalink and linked Hospital Episode Statistics to identify 68?572 patients (11?688 ILD exposed (mean follow-up: 3.8 years); 56?884 unexposed controls (mean follow-up: 4.0 years), with 349?067 person-years of follow-up. ILD-exposed patients (pulmonary sarcoidosis (PS) or idiopathic pulmonary fibrosis (PF)) were matched (by age, sex, registered general practice and available follow-up time) to patients without ILD or IHD/MI. Rates of incident MI and IHD were estimated. HRs were modelled using multivariable Cox proportional hazards regression accounting for potential confounders. RESULTS: ILD was independently associated with IHD (HR 1.85, 95% CI 1.56 to 2.18) and MI (HR 1.74, 95%?CI 1.44 to 2.11). In all disease categories, risk of both IHD and MI peaked between ages 60 and 69 years, except for the risk of MI in PS which was greatest <50 years. Men with PF were at greatest risk of IHD, while women with PF were at greatest risk of MI. CONCLUSIONS: ILD, particularly PF, is independently associated with MI and IHD after adjustment for established cardiovascular risk factors. Our results suggest clinicians should prioritise targeted assessment of cardiovascular risk in patients with ILD, particularly those aged 60-69?years. Further research is needed to understand the impact of such an approach to risk management

    Planet Migration and Disk Destruction due to Magneto-Centrifugal Stellar Winds

    Full text link
    This paper investigates the influence of magneto-centrifugally driven or simply magnetic winds of rapidly-rotating, strongly-magnetized T Tauri stars in causing the inward or outward migration of close-in giant planets. The azimuthal ram pressure of the magnetized wind acting on the planet tends to increase the planet's angular momentum and cause outward migration if the star's rotation period PP_* is less than the planet's orbital period PpP_p. In the opposite case, P>PpP_* > P_p, the planet migrates inward. Thus, planets orbiting at distances larger (smaller) than 0.06AU(P/5d)2/30.06 {\rm AU}(P_*/5{\rm d})^{2/3} tend to be pushed outward (inward), where PP_* is the rotation period of the star assumed to have the mass of the sun. The magnetic winds are likely to occur in T Tauri stars where the thermal speed of the gas close to the star is small, where the star's magnetic field is strong, and where the star rotates rapidly. The time-scale for appreciable radial motion of the planet is estimated as 220\sim 2 - 20 Myr. A sufficiently massive close-in planet may cause tidal locking and once this happens the radial migration due to the magnetic wind ceases. The magnetic winds are expected to be important for planet migration for the case of a multipolar magnetic field rather than a dipole field where the wind is directed away from the equatorial plane and where a magnetospheric cavity forms. The influence of the magnetic wind in eroding and eventually destroying the accretion disk is analyzed. A momentum integral is derived for the turbulent wind/disk boundary layer and this is used to estimate the disk erosion time-scale as 1102\sim 1-10^2 Myr, with the lower value favored.Comment: 8 pages, 6 figure

    A further 'degree of freedom' in the rotational evolution of stars

    Full text link
    Observational and theoretical investigations provide evidence for non-uniform spot and magnetic flux distributions on rapidly rotating stars, which have a significant impact on their angular momentum loss rate through magnetised winds. Supplementing the formalism of MacGregor & Brenner (1991) with a latitude-dependent magnetised wind model, we analyse the effect of analytically prescribed surface distributions of open magnetic flux with different shapes and degrees of non-uniformity on the rotational evolution of a solar-like star. The angular momentum redistribution inside the star is treated in a qualitative way, assuming an angular momentum transfer between the rigidly-rotating radiative and convective zones on a constant coupling timescale of 15 Myr; for the sake of simplicity we disregard interactions with circumstellar disks. We find that non-uniform flux distributions entail rotational histories which differ significantly from those of classical approaches, with differences cumulating up to 200% during the main sequence phase. Their impact is able to mimic deviations of the dynamo efficiency from linearity of up to 40% and nominal dynamo saturation limits at about 35 times the solar rotation rate. Concentrations of open magnetic flux at high latitudes thus assist in the formation of very rapidly rotating stars in young open clusters, and ease the necessity for a dynamo saturation at small rotation rates. However, since our results show that even minor amounts of open flux at intermediate latitudes, as observed with Zeeman-Doppler imaging techniques, are sufficient to moderate this reduction of the AM loss rate, we suggest that non-uniform flux distributions are a complementary rather than an alternative explanation for very rapid stellar rotation.Comment: 12 pages, 13 figures, accepted for publication by A&

    The Effects of Alfven Waves and Radiation Pressure in Dust Winds of Late-type Stars

    Full text link
    In the present study, we analyze the effects of a flux of Alfven waves acting together with radiation pressure on grains as an acceleration mechanism of the wind of late-type stars. In the wind model we simulate the presence of grains through a strong damping of the waves, we used a non-isothermal profile for temperature, coherent with grain formation theories. We examine the changes in the velocity profile of the wind and we show that if the grains are created in the region 1.1 < r/r_0 < 2.0 their presence will affect the mass loss and terminal velocity. The model is applied to a K5 supergiant star and for Betelgeuse (alpha Ori).Comment: 6 pages, 3 figures, accepted in ApJ (Sep, 2002
    corecore