2,580 research outputs found
Modulation of adult-born neurons in the inflamed hippocampus.
Throughout life new neurons are continuously added to the hippocampal circuitry involved with spatial learning and memory. These new cells originate from neural precursors in the subgranular zone of the dentate gyrus, migrate into the granule cell layer, and integrate into neural networks encoding spatial and contextual information. This process can be influenced by several environmental and endogenous factors and is modified in different animal models of neurological disorders. Neuroinflammation, as defined by the presence of activated microglia, is a common key factor to the progression of neurological disorders. Analysis of the literature shows that microglial activation impacts not only the production, but also the migration and the recruitment of new neurons. The impact of microglia on adult-born neurons appears much more multifaceted than ever envisioned before, combining both supportive and detrimental effects that are dependent upon the activation phenotype and the factors being released. The development of strategies aimed to change microglia toward states that promote functional neurogenesis could therefore offer novel therapeutic opportunities against neurological disorders associated with cognitive deficits and neuroinflammation. The present review summarizes the current knowledge on how production, distribution, and recruitment of new neurons into behaviorally relevant neural networks are modified in the inflamed hippocampus
Investigation of the effect of consolidation on cement flow behaviour
International audienceOne of the main problems affecting the flow of cement bulk powder is the formation of cohesive arching at the outlet of the hopper, causing blockage of the silo opening and bridge formation. A simple concept is established which outlines these complications. In this context, the interactions of particles lead to a high degree of consolidation of the cement powder and an increase of adhesion force due to the small size and the large surface area of the cement particles. The results from the consolidation test and the flow properties (cohesion) show that the cement powder flow is mainly controlled by internal forces (Van der Waals and adhesion forces) and external forces. These forces have a direct influence on the powder structure, leading to a variable packing behaviour. Since the problem is attributable mainly to interparticle forces, before storage of the cement powder in the silo, the powder should be fluidised with air at a high velocity to disintegrate the cohesive structure and to overcome this undesirable property of cement flow
STABLE ADAPTIVE CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITHOUT USE OF A SUPERVISORY TERM IN THE CONTROL LAW
In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF) network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory) term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method
Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator
In this work, we introduce an adaptive neural network controller for a class
of nonlinear systems. The approach uses two Radial Basis Functions, RBF
networks. The first RBF network is used to approximate the ideal control law
which cannot be implemented since the dynamics of the system are unknown. The
second RBF network is used for on-line estimating the control gain which is a
nonlinear and unknown function of the states. The updating laws for the
combined estimator and controller are derived through Lyapunov analysis.
Asymptotic stability is established with the tracking errors converging to a
neighborhood of the origin. Finally, the proposed method is applied to
control and stabilize the inverted pendulum system
Existence results for impulsive dynamic inclusions on time scales
In this paper, we investigate the existence of solutions and extremal solutions for a first order impulsive dynamic inclusion on time scales. By using suitable fixed point theorems, we study the case when the right hand side has convex as well as nonconvex values
Simultaneous Effect of Temperature and Irradiance on Growth and Okadaic Acid Production from the Marine Dinoflagellate Prorocentrum belizeanum
Benthic marine dioflagellate microalgae belonging to the genus Prorocentrum are a major source of okadaic acid (OA), OA analogues and polyketides. However, dinoflagellates produce these valuable toxins and bioactives in tiny quantities, and they grow slowly compared to other commercially used microalgae. This hinders evaluation in possible large-scale applications. The careful selection of producer species is therefore crucial for success in a hypothetical scale-up of culture, as are appropriate environmental conditions for optimal growth. A clone of the marine toxic dinoflagellate P. belizeanum was studied in vitro to evaluate its capacities to grow and produce OA as an indicator of general polyketide toxin production under the simultaneous influence of temperature (T) and irradiance (I0). Three temperatures and four irradiance levels were tested (18, 25 and 28 °C; 20, 40, 80 and 120 µE·m−2·s−1), and the response variables measured were concentration of cells, maximum photochemical yield of photosystem II (PSII), pigments and OA. Experiments were conducted in T-flasks, since their parallelepipedal geometry proved ideal to ensure optically thin cultures, which are essential for reliable modeling of growth-irradiance curves. The net maximum specific growth rate (µm) was 0.204 day−1 at 25 °C and 40 µE·m−2·s−1. Photo-inhibition was observed at I0 > 40 μEm−2s−1, leading to culture death at 120 µE·m−2·s−1 and 28 °C. Cells at I0 ≥ 80 µE·m−2·s−1 were photoinhibited irrespective of the temperature assayed. A mechanistic model for µm-I0 curves and another empirical model for relating µm-T satisfactorily interpreted the growth kinetics obtained. ANOVA for responses of PSII maximum photochemical yield and pigment profile has demonstrated that P. belizeanum is extremely light sensitive. The pool of photoprotective pigments (diadinoxanthin and dinoxanthin) and peridinin was not able to regulate the excessive light-absorption at high I0-T. OA synthesis in cells was decoupled from optimal growth conditions, as OA overproduction was observed at high temperatures and when both temperature and irradiance were low. T-flask culture observations were consistent with preliminary assays outdoors
- …
