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Abstract   1 

One of the main problems affecting the flow of cement bulk powder is the formation of 2 

cohesive arching at the outlet of the hopper, causing blocking of the silo opening and 3 

bridge formation. A simple concept is established which outlines these complications. In 4 

this context, the interactions of particles lead to a high degree of consolidation of the 5 

cement powder and an increase of adhesion force due to the small size and the large 6 

surface area of the cement particles. The results from the consolidation test and the flow 7 

properties (cohesion) show that the cement powder flow is mainly controlled by internal 8 

forces (Van der Waals and adhesion forces) and external forces. These forces have a 9 

direct influence on the powder structure, leading to a variable packing behaviour.  10 

Since the problem is due mainly to the interparticle forces, before storage of the cement 11 

powder in silo, the powder should be fluidised with air at high velocity to disintegrate the 12 

cohesive structure and to overcome over this undesirable property of cement flow. 13 

Keywords: Compressive strength; Modeling; Rheological/rheological properties; Stress;      14 

                  Set-packing.  15 
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Notation 1 

FN Normal force 2 

FVdW Van der Waals force 3 

Fs Adhesion force 4 

A Hamaker constant 5 

D Reduced diameter 6 

z Distance between the two particles  7 

sc Contact surface (sc = r2) 8 

r Radius of the contact surface 9 

Fs Adhesion force 10 

R Particle radius  11 

K  12 

 External stress 13 

dp Average particle diameter  14 

n Coordination number 15 

Fex. External force 16 

S Cell surface 17 

M Mass of the powder in the cell 18 

h Height of the packed bed of particles 19 

(1- ) Solid fraction 20 

p Particle density 21 

c Cohesion 22 

1 Maximum stress  23 

c Compressive resistance 24 

Ni Number of particles in class i  25 

di Average diameter of the particles in class i 26 

FFc Flow property.  27 
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1. Introduction   1 

Several cement plants deal with bulk flow problems that have a detrimental impact on 2 

production efficiency, as described by Maynard (2004). Most of the methods used for 3 

measuring the flowability of cement make use of some concepts developed in powder 4 

mechanics as shown by Maynard (2004). The cement powder flow is mainly controlled by 5 

internal and external forces. These forces are the main cause for agglomerating the 6 

cement particles in concrete and of resulting of poor flow properties, as discussed by Flatt 7 

(2004).   8 

The physical properties of cement powder are directly related to the conception of 9 

appropriate and efficient storage equipment as shown by Ganesan et al. (2008). The 10 

consolidation and porosity of the solid structure are linked to the understanding of the 11 

cement powder flow behaviour, as reported by Leturia et al. (2014). Holdich (2002) stated 12 

that the effect that the solid fraction has on flowability powder is probably the most 13 

interesting part of the investigation. The powder structure porosity is mainly related to the 14 

bulk density which is the combined density of the powder and the void space as shown by 15 

Holdich (2002).   16 

The complexity of the cement powder structure requires an examination of the powder 17 

behaviour, in particular the particles interaction and pore description. The small size and 18 

the large surface area of the cement particles lead to the formation of agglomerates and 19 

change the porosity of the solid structure that may be reduced by polymeric dispersants 20 

addition, as stated by Uchikawa et al. (1997), Ramachandran et al. (1998) and  et al. 21 

(1994).  The consolidation of the powder would reduce the void of the structure and hence 22 

increases the effectiveness and toughness of the material, as described by Li and Kwan 23 

(2014). The packed density of the cement powder is a basic aspect governing the 24 
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effectiveness of concrete as confirmed by Li and Kwan (2014). The adhesion forces can 1 

incite efficiency reduction in the industrial processes, as described by Siegel et al. (1963). 2 

Flatt (2004) showed that the flowability of a powder structure is related to the adhesive 3 

forces between individual particles. 4 

Understanding the behaviour of adhesion interactions between particles and surfaces can 5 

contribute to the understanding of the cement powder flow. The different forces involved 6 

have to be considered under consolidation namely the Van der Waals, the adhesive and 7 

external forces, as was showed by Turki and Fatah (2010). In this context, Flatt (2004) 8 

showed that it is essential to evaluate the magnitude of the attractive interparticle forces.   9 

The aim of this research is to present a simple model that takes into account the 10 

interparticle forces and the variation of porosity of cement powder bed under external 11 

stress (consolidation). That is used to explain the cohesion and the other explicit 12 

macroscopic properties of the cement powder flow. The adhesive forces of the cement 13 

powder structure are examined and related to the flow obstruction in a silo. 14 

 15 

2. Models related to the interparticle forces 16 

Forsyth et al. (2002) elucidated that the interparticle forces between particles of group C 17 

Geldart (1973) classification are significant compared to the inertial and gravitational 18 

forces, causing poor particle flowability. The adhesion forces would increase with 19 

compaction. Schulze (2008) and Tomas (2007) reported that the adhesive forces acting 20 

between the particles increase when the particles are constrained to each other by 21 

external forces, showing that significant interactions between particles occur, leading to 22 

plastic deformation of the particles in the contact region. In this situation Schulze (2008) 23 
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and Tomas (2007) described that the powder cement flow is principally related to the 1 

forces or stresses formerly acting on the powder structure. These forces comprise the 2 

consolidation stress exerted on the powder structure, with resulting increase of the 3 

adhesion force and hence forming a more compact powder. These concepts rely on 4 

interparticle forces estimations that are subject to the appropriate models and assumptions 5 

made by Schulze (2008), Tomas (2007).  6 

The behaviour of cohesive powders is outlined principally by the contact of external forces 7 

acting on the surface of particles and the cohesion due to the interparticle forces (Van der 8 

Waals and adhesion forces). Molerus (1975) assumed that during consolidation, the total 9 

normal force due to external force is in equilibrium with other forces. 10 

 N VdW sF F F    11 

1. 12 

The Van der Waals force between particles is the main parameter that dominates the 13 

powder cohesion as stated by Rumpf (1962), and controls the adhesion between fine 14 

particles and, in turn, affects the bulk behaviour of powder. Li et al. (2006) and Tomas 15 

(2007) stated that the influence of particle adhesion is defined by surface forces i.e. Van 16 

der Waals forces. However, under external stress, particles may deform when in contact 17 

with each other as reported by Castellanos (2005). 18 

The London-Van der Waals attractive force at solid interface occurring as a result of 19 

changing dipoles at the atomic level were integrated by Hamaker (1937) to estimate the 20 

attraction between molecules. The Hamaker theory (1937) is used to estimate the Van der 21 

Waals force. This force is considered only when the particle surfaces are closer as 22 
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confirmed by London (1937). An improved model suggested by Langbein (1969) and 1 

rface properties of particles.   2 

The Van der Waals force is deduced from the energy interaction between two particles 3 

given by Xie (1997) as:
 

4 

 5 

2 1
12

c
VdW

sAD
z Dz

F                                                6 

 2.           7 
 8 

Johnson et al. (1971) showed that r is given as:  9 

3 3 sF R
r

K
                   10 

 3.                                                                                                     11 

The normal force as outlined by Equation (1) can be written as: 12 
 13 

 2 2

2 /3 2/ 3

1/3 2/3
3

1 1
12 12

c s
N s s

sAR AR
z Rz z R z K

FF F F         14 

 4.    15 

The adhesive force Fs in the contact of packed particles resulting from the application of 16 

external stress  is given by Rumph (1962) as: 17 

 
2

(1- )
p

s

d
F

n
            18 

5.   19 

According to Nakagaki and Sunada (1968), the coordination number n is given by:  20 

-1.481.61 ( 0.82)n          21 

6.  22 
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The adhesive force is expressed with the particle diameter, therefore for different particle 1 

size distributions, theoretically, the adhesive force would remain the same if the particle-2 

particle interactions have the same magnitude of interaction in the sample of analysis, but 3 

in fact the particle size distribution depends on the arrangement of the particles (particles 4 

interactions especially for fine powders categorized in the class C of Geldart (1973) 5 

classification. It is complex to calculate the adhesion force for each particle in the particle 6 

size distribution. To make the problem less complex, we consider the average diameter 7 

(applicable only for a uniform distribution) and assuming that the contact is between two 8 

particles that have the same average diameter. 9 

 10 

3.  Experimental procedure          11 

3.1 Material and methods 12 

The powder used in this work is the ordinary Portland cement (OPC) of class CEM II/A-L 13 

42.5 N.  14 

The relative content of oxide in the cement powder is determined with the use of an energy 15 

dispersive micro-XRay Fluorescence spectrometer M4 TORNADO (Bruker). This 16 

instrument is equipped with 2 anodes a Rhodium X-ray tube 50 kV/600 mA (30 W) and a 17 

Tungsten X-Ray tube 50 kV/700 mA (35 W). For sample characterization, the X-rays 18 

19 

measurement was done under vacuum (20 mbar). The elements, that can be measured by 20 

this instrument unit range from sodium Na to uranium U. Quantitative analysis was done 21 

using fundamental parameter (FP) (standardless). As elements are present in 22 

stoichiometric compounds, its formula was used for quantification of the weight percent of 23 

each element. 24 
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For each sample 36 points (of 2 re analysed, the results are showed as 1 

elemental and stoichiometric analysis (based on Formula of the oxide). For each sample, 2 

the mean value and standard deviation are presented in Table 1a. 3 

The physical characteristics of the cement powder according to the Algerian Norms 4 

(NA442), which is equivalent to the European Standard EN 197-1:2011, and that used in 5 

this study are indicated in Table 1b. 6 

 7 

3.1.1 X-ray diffraction characterization  8 

X-ray diffraction measurements of the studied cement were performed on a Rigaku 9 

Miniflex-600 using SC-70 detector. The powder diffraction patterns of the cement were 10 

recorded using Bragg Brentano geometry and Cu-K  radiation (  = 1.5406 11 

as used to 12 

analyze the diffraction pattern. 13 

 14 

3. 1.2 Scanning Electron Microscope 15 

The microscopic morphology of the Alite particles was examined by using a SEM Hitachi 16 

SN-3400.  17 

  18 

3.2 Consolidation Test 19 

To estimate the extent of cohesiveness of the cement powder, a consolidation test was 20 

carried out to examine the variation of the powder volume and the reduction of the porosity 21 

tendency under normal stress. 22 
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 The consolidation test is reported in a previous article by Turki et al (2015) and was 1 

carried out on the cement powder to analyse the variation of the powder volume and the 2 

reduction of the porosity under normal stress.  3 

This test is not a measurement of flowability but is associated with various environmental 4 

processes, such as storage in hoppers as reported by Leturia et al. (2014). Figure 1 shows 5 

the consolidation test as described by Turki et al. (2015).  The external stress is written as: 6 

.exF
S

                  7 

 7.   8 

Consequently, the difference of the solid fraction (1- ) is considered and correlated to the 9 

external stress  by the relationship:   10 

 11 

                                                                                                                                                                            12 

8. 13 

 14 

3.3 Shear Cell 15 

The flow of the powder depends on its consolidation. The effect of consolidation stress on 16 

the powder is dependent of the packing and rearrangement of the particles. Accordingly, it 17 

is fundamental to assess the flowability of the powder according to the consolidation 18 

condition as stated by Diederich et al. (2012). The flowability and cohesion of powder were 19 

presented in a previous research, Turki et al. (2015). The measurements of the flowability 20 

and cohesion of powders were made with the shear cell of Schulze (1995) as illustrated in 21 

Figure 2. 22 

 23 

p 

M 1-   =
Sh 
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4. Results and discussion 1 

4.1 Cement characterization 2 

The Figure 3 shows the diffraction patterns obtained by the X-ray diffraction 3 

characterization.  4 

The content of the cement is estimated by quantitative analysis of the diffraction patterns 5 

Figure 3, based on the reference intensity ratio (RIR) method integrated in the PDXL 2. 6 

Software. The different phases present in our sample are presented in Table 2. 7 

The X-ray diffraction measurements investigation indicates that the principal silicate 8 

phases existing in all the samples are Alite, tricalcium silicate Ca3O5Si.  9 

To observe the microscopic morphology of the Alite particles, the cement powder was 10 

analyzed by scanning electron microscope using a SEM Hitachi SN-3400.  Figure 4 shows 11 

the polymorphism of the Alite particles and the surfaces geometry.  12 

 The polymorphism of the Alite particles as shown by Courtial et al. (2003) might have a 13 

great impact on the cement powder cohesion. Subsequently, the particle surfaces are 14 

closer which enhance the Van der Waals forces interaction Hamaker (1937). As illustrated 15 

by SEM photos in Figure 4, surface geometry has an important effect on the interaction 16 

between particles. This gives an insight towards modelling these interactions using 17 

surface-geometry based models.  18 

                                                                                                                                                                                                                           19 
4.2 Powder size distribution 20 

The powder size distribution illustrated in Figure 5 was measured with a laser light-21 

scattering instrument (Beckman-Coulter, LS230).  22 

The average diameter of the cement powder was calculated in accordance to the Sauter 23 

 . Explicitly, the average diameter is calculated 24 

-  25 
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3

2

i i

i i

p
N dd
N d

 1 

9. 2 

Where Ni is the number of particles in class i and di is the average diameter of the particle 3 

in this class. 4 

The average diameter was given by the laser light-scattering instrument (Beckman-5 

Coulter, LS230), using the Algorithm to compute the Sauter diameter from a large set of 6 

data, giving .      7 

The particle density p was measured with a helium pycnometer (Micromeritics, AccuPyc 8 

1330) giving a density of 3577 kg/m3. Taking into account the particle density and the 9 

average size of the cement powder, the powder can be categorized under group C of the 10 

Geldart (1973) classification.  11 

 12 

4.3 Powder flow and consolidation 13 

The yield locus and the variation in solid fraction according to the normal stress of the 14 

cement powder are illustrated in Figure 6 and Figure 7, respectively. As enlightened by 15 

Turki et al. (2015).  16 

The results of flowability and cohesion of powder were presented in a previous research, 17 

Turki et al. (2015). Figure 6 indicates that the cohesion c=578 Pa. From the yield locus, 18 

the maximum stress 1=5370 Pa and the compressive resistance c=2169 Pa. The 19 

parameter FFc is defined as the ratio between 1 and c that defines the flow property. FFc 20 

was found to be 2.48, resulting that the cement powder is classified as cohesive, difficult 21 

flow.  22 

During consolidation, the cement powder structure is uniform and formed by a number of 23 
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particles in contact. The variation of the solid fraction is mainly due to the interparticle 1 

forces and tends to attain a linear regime, Figure 7.   2 

From the consolidation test and using the models developed in Equation (4) and Equation 3 

(5). With a Hamaker constant A of Ordinary Portland Cement (OPC) as -20 J. 4 

given by Lomboy et al. (2011) and the cement particle diameter The distance 5 

between particle surfaces z -10 m, according to Krupp (1967). The reduced 6 

Young  modulus is given by Boumiz et al. (1997) as 117.6 GPa. 7 

The variation of the adhesion force Fs to the normal force FN obtained from Equation (4) is 8 

illustrated in Figure 8. The adhesive force starts increasing linearly with the normal force, 9 

showing that at initial stage important air diffusion occurs within the powder structure, with 10 

the contact number between particles arising from the adhesion forces. Then the particles 11 

start to be set in a compact arrangement. Subsequently, a strong cohesion between 12 

particles occurs, leading to the formation of an important number of agglomerates. This 13 

confirms that the behaviour of cement powder under consolidation is controlled by the 14 

internal forces.  15 

For higher values of adhesion force, the transition region is attained resulting in an 16 

increase of solid fraction and attainment of a linear regime. The load is extended on the 17 

solid structure. Thus, there is consolidation of the packed bed of powder. Consequently, 18 

the cement powder flow is mainly affected by the adhesion forces and internal forces due 19 

to the time consolidation of cement in the silo as stated by Schulze (1995).  As the 20 

adhesion force increases, the impact of the Van der Waals forces on the behaviour 21 

becomes considerable in forming a large number of agglomerates as illustrated in Figure 9 22 

using Equation (2). Confirming that the interaction between particles is important and this 23 

validates the results of the shear test as stated by Turki et al. (2015). Consequently, taking 24 
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into account the flow of the cement powder in a silo without consolidation, the powder is 1 

subjected to its weight that plays the role of the adhesive forces, involving an increase in 2 

the Van der Waals forces, hence causing a larger cohesion between particles and then 3 

generating a clogging at the silo outlet.   4 

This behaviour is confirmed in Figure 10, showing the evolution of the solid fraction 5 

according to the adhesion force where the first part of the graph increases linearly with a 6 

straight up development, showing an enhancement in the solid fraction by evacuating the 7 

air in the powder structure.  8 

Figure 10 is deduced from the consolidation test resulting in determining the solid fraction 9 

(1- ) and a combination of the adhesion force Fs given by the equation of Rumph (1962), 10 

equation 5. Then, the structure is formed of a partial uniform powder. This behaviour is 11 

expected to reflect a disintegration of the agglomerates and an increase of the contact 12 

surfaces between the particles. The solid fraction-adhesion force curve shows a large 13 

upward change of the solid fraction to give a more stable solid structure.  14 

This research revealed that the consolidation test and the flow properties highlight that the 15 

cohesion of cement powder is controlled by internal forces and external forces. Throughout 16 

the exertion of external forces, different interactions take place in the powder structure. 17 

Furthermore, it is interesting to find the relationship between the impact of the Van der 18 

Waals forces acting as an isolated interaction to the adhesive forces, that highlights the 19 

 to agglomerate under the action of the powder weight and, therefore, 20 

stopping the free flowing of the cement powder.  21 

Similarly, Figure 8 and Figure 10 show the variation of the adhesive and Van der Waals 22 

forces with the normal force and the solid fraction respectively, resulting from the 23 

consolidation test and using the force equilibrium model of Molerus (1975). These figures 24 
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highlight the considerable role of the internal forces in forming cohesive arching at the 1 

outlet of the hopper. 2 

The deformation of the contact surfaces between the particles facilitates the increase of 3 

the Van der Waals forces, resulting in an expansion of the contact region, as confirmed by 4 

Krupp (1967). This deformation is due to the adhesion forces; ensuing an enhancement of 5 

particles cohesion primarily due to consolidation. 6 

 7 

5. Conclusion 8 

Understanding the relationship between the cement powder flow and the adhesion forces 9 

is the way to overcome the obstruction for the cement powder flow. Cement powder flow 10 

was investigated and quantified by using various techniques such as shear stress and 11 

consolidation.   12 

The interparticle forces are at the origin of the formation of arches at the base of the silo 13 

mainly due to an increase in adhesion forces. The cement powder has a tendency to 14 

consolidate to form a more compact structure and therefore hinder the flow.   15 

The results from the consolidation test and the flow properties (cohesion) show that the 16 

cement powder flow is mainly controlled by internal forces (Van der Waals and 17 

adhesion forces) and external forces.  18 

As these results confirm the blocking of the silo opening a further research would be 19 

carried out, aiming to disintegrate the cohesive structure by fluidisation of the cement 20 

powder with air before undertaking the powder stockage in silo. The fluidisation process of 21 
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cohesive cement powder would lead to the suspension of the agglomerates (made up of 1 

primary particles) at a very high gas velocity (above the minimum velocity).  2 

The cement powder is mainly composed of polymorphism Alite particles which could be 3 

assessed by a number of asperities in contact. These in turn will enhance the Van der 4 

Waals forces interaction, which is an interesting area of research that needs to be further, 5 

investigated. 6 

 7 
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Physical and mechanical properties of cement CEM II/A-L   42.5 N 

Initial setting time (min) 125 

Final setting time (min) 185 

Thermal expansion (mm) 0.47 

Specific area (Blaine) (cm2/g) 4465 

Standard consistency (%H2O) 27.04 

 Compressive strength (MPa) Flexural strength (MPa) 

2 days 23.19 4.99 

7 days 35.24 6.78 

28 days 44.64 7.80 



Phase name Content (%) 
Alite 51 
Brownmillerite 15 
Periclase 11.7 
Ferrite 9.2 
Quartz 5.4 
Belite (Dicalcium Silicate) 4.7 
Portlandite 1 
Arcanite 1 
Lime 0.8 

 



Table 1a. Micro-XRay Fluorescence spectrometer analysis of the cement class CEM II/A-L 42.5 N  
 
Table 1b. Physical characteristics of cement class CEM II/A-L 42.5 N conforming to NA442 (or EN   
               197-1:2011) See:( https://www.scimat.dz/portail/gamme/ciments/) 
 
Figure 1. Consolidation test 
 
Figure 2. Annular shear cell Schulze (1995) 

Figure 3. Diffraction patterns of Portland cement (OPC) of class CEM II/A-L 42.5 N 
 
Table 2. Quantitative analysis of Portland cement (OPC) of class CEM II/A-L  42.5 N 
 

Figure 4. SEM photos of cement (OPC) of class CEM II/A-L 42.5 N, 
               scaling (100 , 20 , 10  and ) 
 
Figure 5. Particle size distribution of cement powder 

 

Figure 6. Turki et al. (2015) 

 

Figure 7. Variation in solid fraction according to the normal stress for cement 

               powder Turki et al. (2015) 
 
Figure 8. Variation of the adhesion and Van der Waals forces vs. the normal force 

 

Figure 9. The variation of Van der Waals forces to the adhesion force 

 

Figure 10. The evolution of the solid fraction according to the adhesion force 

 
 
 
 

 

 

 

 

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)


	Investigation of the effect  cs
	Investigation of the effect  pdf

