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Abstract 

In this paper, a direct adaptive control scheme for a class of nonlinear systems is 

proposed. The architecture employs a Gaussian radial basis function (RBF) 

network to construct an adaptive controller. The parameters of the adaptive 

controller are adapted and changed according to a law derived using Lyapunov 

stability theory. The centres of the RBF network are adapted on line using the k-

means algorithm. Asymptotic Lyapunov stability is established without the use of 

a supervisory (compensatory) term in the control law and with the tracking errors 

converging to a neighbourhood of the origin. Finally, a simulation is provided to 

explore the feasibility of the proposed neuronal controller design method. 

Keywords: Feedback linearization, Adaptive control, k-means algorithm, 

                   Lyapunov stability, Radial basis function network. 

 

 

1.  Introduction 

It is well known that neural networks (NN) are massively parallel computational 

models inspired by the structure of the human brain and are capable of learning 

highly complex and nonlinear mapping. It has been proven that artificial neural 

networks can approximate any nonlinear functions to any desired degree [1-3]. 

They are thought to be potentially powerful tools for nonlinear as well as linear 

control systems. There has consequently been considerable research on the 

development and application of neural networks over the last decade [3-5]. In 

control engineering Multilayered Perceptrons, MLP, and radial basis functions, 

RBF, are the most widely used neural networks. The first applications of NN in 

control did not include rigorous analysis of the stability  [6, 7].  However,  in control  
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Nomenclatures 
 

A Cross section area of the cylinder, cm
2
 

Ac A matrix of size (n×n) 

b Control gain 

bc Vector containing the control gain b  

ci Centres of the basis function number i 

d(t) External disturbance 

de= e&  Derivative of the error 

e Tracking error 
e  Error vector 

( )xf  Nonlinear function 

g Universal gravitation, cm/s
2
 

int Integer part 

K Constant gain vector 

K
T
 Transpose of vector K 

ki Integral  action of the regulator 

kp Proportional action of the regulator 

Lm2 Reference signal, cm 

L2 Liquid level in Tank2, cm 

MLP Multilayered perceptrons 

min Minimum 

NN Neural network 

n Degree of the system 

nr Number of basis functions 

P Solution (n×n matrix) of the Lyapunov equation 

PI Proportional Integral regulator 

Pn Last column of P(n×1) 

Q Positive diagonal symmetric (n×n) matrix 

Q1 Flow rate for Tank1, cm
3
/s 

Q2 Flow rate for Tank2, cm
3
/s 

R
n Real value set 

r Euclidean distance, cm 

S Cross section, cm
2
 

SISO Single input single output 

s Laplace operator 

sup Supreme 

T1, T2, T3 Tank1, Tank2, Tank3 

t Time, s 
*

u  Optimal control law 

u(t)  Input of the system (Control input) 
( )θ,xu  Approximation of the control input u 

( )θ&,xu  Approximation of the ideal control input *u  

V Lyapunov function 

V&  Derivative of the Lyapunov function 

w Minimum approximation error 

w1 The quantity, -(bw + d)  

x(t)  State of the system 
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( )tx  State vector 

y(t)  Output of the system 

ym(t)  Reference signal 
 

Greek Symbols 

δ Positive constant 

δ(t) gain belonging to the interval [0  1] 

ϕ Error between θ  and θ&   

ϕ&  Derivative of ϕ 

γ Positive constant 

λQmin minimum eigenvalue of Q 

µ Positive constant 

µ1 Outflow coefficient µ1 = µ2 = µ3 

ν Artificial (equivalent) input of the system 

θ Connection weight of the RBF network 

θ  Vector of connection weights 

*θ  Ideal parameter (ideal connection weight) 

*θ  Ideal parameter vector 

σ Width of the Gaussian function 

)(xξ  Output of the basis function 

Ωe Compact set 

ψ(r) Radial basis function 

systems, it is important to have design methodologies that provide proofs of 

stability for the system. Several neural network adaptive control algorithms based 

on Lyapunov’s stability theory have been proposed [8-10].  

The advantage is that these adaptive laws guarantee the stability of the closed 

loop systems. Generally this is done in an adaptive control framework.  Most works 

in adaptive control are based on the assumption of linear or simplified form of 

nonlinear mathematical models of systems to be controlled. In fact, adaptive control 

of linear systems and certain special classes of nonlinear systems has been well 

developed from the late 1970’s to the 1990’s. While adaptive control of general 

nonlinear systems still presents a challenge to control community. Nevertheless, 

mathematical models might not be available for many complex systems in practice, 

and the adaptive control problem of these systems is far from being satisfactorily 

resolved [11, 12]. Most of the adaptive controllers involve certain types of function 

approximators in their learning mechanism. Also, fuzzy logic systems are widely 

used for this purpose. Based on this, a great number of works on adaptive fuzzy 

control have been proposed [13-16, 18, 19], where the general approach is usually 

based on the feedback linearization technique as mentioned by Slotine [17]. The 

used fuzzy inference system is introduced for approximating part or all the 

components of the control law. In most cases however [13-16, 18], a 

complementary  term, called a supervisory or a compensatory controller, is added to 

the output of the fuzzy inference system as a part of the control law in order to 

guarantee the global stability using the Lyapunov theory. The supervisory term 

plays the role of a robust controller. When the system is operating within the 

prescribed range, the supervisory controller is turned off. It is activated only if the 

system tends to go beyond the prescribed tolerance. 
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This work was built on the initial proposal [14-16] to construct an RBF direct 

adaptive control SISO nonlinear system instead of the fuzzy control system used 

in these papers but without use of a compensatory or a supervisory control term as 

done in these papers and our system contains also an external disturbance. 

Usually, in RBF based adaptive control, the online adaptation is concerned only 

with the connections weights.      

The centres of the basis functions are fixed offline [9, 20]. In particular, the 

adaptation of both the centres and the connections weights is considered in [21] 

and in some other works. The main advantage of the RBF network is that their 

output depends linearly on the connections weights and thus the training becomes 

a linear optimisation problem. In this work, we propose to online adjust both the 

centres of the basis functions and the connections weights. The k-means algorithm 

[22] will be used on line for the centres adjustment. 

The connections weights are adapted and changed according to a law derived 

using Lyapunov stability theory. Asymptotic Lyapunov stability of the resulting 

closed loop system is established without the use of a compensatory or a 

supervisory term in the control law and with the tracking errors converging to a 

neighbourhood of the origin. This work is organised as follows: in section 2, the 

problem formulation is introduced, in section 3, the stability analysis is developed 

and the adaptive laws are derived, in section 4, the direct adaptive RBF controller 

is used in simulation to control some stable and unstable nonlinear systems to 

show the effectiveness of the proposed method. 

 

2.  Problem Formulation  

Consider a non linear system that can be transformed into the following Slotine 

form [17]         

),()(.),...,( )1()(
tdtubxxxfx

nn ++= −
&      )()( txty =                                              (1) 

where   )( Rtu ∈ and Rty ∈)(  are the input and output of the system 

respectively, f is a unknown non linear function, b is a positive unknown bounded 

constant and d(t) is an external bounded disturbance. Assume that the state vector 
nTnT

n Rxxxxxxx ∈== − ),...,(),...,,( )1(

21
&  is available for measurement. The control 

objective is to force the output y to follow a given bounded reference signal ym(t), 

under the constraints that all signals involved must be bounded. More specifically, 

determine a feedback control estimation ),( θxu of u, and all this is based on an 

RBF network. Determine also an adaptive law using Lyapunov theory for adjusting 

the parameters vectorsθ  such that the following conditions are met 

• The closed-loop system must be globally stable in the sense that all 

variables must be uniformly bounded. 

• The tracking error myye −= should be as small as possible under the 

constraints in Eq. (1). 

 

Define now the error vector as  

nTn Reeee ∈= − ),...,,( )1(
&                                                                                         (2) 
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Step1: Choose u to cancel the nonlinearities in a nonlinear system so that the 

closed-loop dynamics is in a linear form, and guarantee tracking convergence 

based on a feedback linearization theory [17]. If the function f is known and 

the external disturbance d does not exist, and assuming b to be positive 

constant, then, from Eq. (1), the optimal control law is  

))(.(
1

xfv
b

u −=∗                                                                                                  (3) 

Step2: Choose the artificial input v  (an equivalent input) as a simple linear 

pole-placement controller eKyv
Tn

m −= )(
 that provides guarantee about the 

stability of the overall system. The vector K is defined below. 

Substituting Eq. (3) into Eq. (1), in order to cancel the nonlinearities and 

obtain the simple input-state relation        

vx
n =)(                                                                                                                  (4) 

the vector K defined as  

nT

n RkkkK ∈= − ),...,,( 110                                                                                      (5) 

is chosen so that the polynomial  

0....... 0

1

1 =+++ −
− ksks n

n

n                                                                                    (6) 

has all its roots strictly in the left-half complex plane. Then the optimal 

control law is 

))(..(
1 )(

xfeKy
b

u
Tn

m −−=∗
                                                                                 (7)  

based on myye −=   then  

)()()( n

m

nn yye −=                                                                                                     (8) 

Substituting Eq. (7) into Eq. (1), using Eq. (8) and based on y = x, see Eq. (1), 

yields 

0........ 0

)1(

1

)( =+++ −
− ekeke

n

n

n                                                                              (9) 

This implies that ( ) 0lim →
∞→

te
t

(exponentially stable dynamics), which is the 

main objective of control. Since f is unknown and the external disturbance d exists, 

the optimal control ∗u of Eq. (7) can not be implemented. Our purpose is to design 

an RBF network with output ),( θxu to approximate this optimal control law. 

 

 

3.  The Direct Adaptive RBF Controller  

3.1.  The RBF network 

The RBF network can be considered as a two-layer network with only one hidden 

layer. The output depends linearly on the weights, then, the training is simply a 
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linear optimization problem [23].  More explicitly, the RBF network performs the 

transformation 

fr: R
n       → R ,  with :  i

nr

i

ixu θξθ ∑
=

=
1

),( = )(x
Tξθ , )(

2ii cx −=ψξ                 (10) 

x  is the input vector, ψ  is a non linear function called radial basis function, 

θ  are connections weights to be adapted (parameters) between the hidden layer 

and the output layer, ci are centres of basis functions and nr is the number of basis 

functions. The most used basis function is the Gaussian function. However, it is 

shown in [21] that Gaussian basis function does have the best approximation 

property. This is the principle reason being the selection of Gaussian functions to 

characterize the membership function in this work.      

)
.2

exp()(
2

2

σ
ψ

r
r

−
=                                                                                                (11) 

with 
2icxr −= , ci is the vector of centres of the Gaussian function )(rψ , 

σ is an associated constant to the function )(rψ  and represents the width of the 

Gaussian function. 

 

3.2. Training and centres placement in an RBF network 

In this work, both the centres of the basis functions and the connections weights 

are online adjusted. The k-means algorithm [24] is used for the centres 

adjustment. The connections weights are adapted and changed according to a law 

derived using Lyapunov stability theory. 

3.2.1. Centres adjustment 

The k-means algorithm is an unsupervised training method for data clustering 

[22]. The most commonly used k-means clustering is the adaptive k-means 

clustering based on the Euclidien distance [24, 25]. Adaptive k-means clustering 

can be considered as a special case of the gradient descent algorithm where only 

the winning cluster is adjusted at each learning step. It consists in dividing the 

input space into k classes as follows 

• Choose a number of classes (k basis functions in our case). 

• Initialise the centres of basis functions.  

• Compute the Euclidean distances between the vector of centres ci of each 

basis function and the input vector x , i.e.,  

2
)( icxidist −= , i=1 to nr                                                                                (12) 

• Adjust the vector of centres ci of the basis function corresponding to the 

minimum distance 
2

min)( icxjdist −=  using the following adaptation 

law [24]   

( ))1()().()1()( −−+−= tctxttctc jjj δ                                                                 (13) 

where j indicates the nearest vector of centres )(tc j to the vector of data 

)(tx (or j is the index of the basis function which corresponds to the minimum 
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Euclidean distance )( jdist ). Notice that, the centres and the data are written in 

terms of time t where )1( −tc j represents the centres location at the previous 

clustering step. The adaptation rate )(tδ is a gain belonging to the interval [0  1] 

and can be selected in a number of ways. Chen et al. [25] used an adaptation rate 

that is updated at each step and tending to zero as ∞→t  according to  

)/int(1

)1(
)(

nrt

t
k

+

−
=

δ
δ                                                                                         (14) 

This law (14) was the suitable one for our work, where t is the time, nr is the 

number of basis functions, and int is the integer part of )/( nrt . 

 

3.2.2. Weights adaptation 

In the following, the adaptation law for the connections weights of the RBF 

network is derived using Lyapunov synthesis approach. As mentioned in section 2 

(Problem formulation), since f is unknown, and the external disturbance d exists, 

the optimal control ∗u  of Eq. (7) can not be implemented. Our purpose is then to 

design an RBF network with output ),( θxu to approximate this optimal control 

law. Thus, replace the control input u in Eq. (1) by the RBF system with 

output ),( θxu , then Eq. (1) becomes  

dxubxfx n ++= ),(.)()( θ                                                                                   (15) 

Now adding and subtracting b ∗u  to Eq. (15), gives  

**)( ),()( bubudxbuxfx
n −+++= θ                                                                 (16) 

Substituting Eq. (7) into Eq. (16) yields 

+−++= *)(
),()( budxbuxfx

n θ )(.
)(

xfeKy
Tn

m −−                                        (17) 

thus 

duxubeKyx Tn

m

n +−+−=− )),(( *)()( θ                                                              (18) 

Based on y = x in Eq. (1) and using Eqs. (2) and (8), Eq. (18) leads to the error 

system  

])),(.([.
*

duxubbeAe cc +−+= θ&                                                                        (19) 

with 























−−−−−

=

−− 12210 ...

10...000

00...100

00...010

nn

c

kkkkk

A  ,  























=

1

0

.

0

0

cb                                   (20) 
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Let’s now study the stability of the system in order to develop an adaptive law 

to adjust the parameter vectorθ . Define the optimal parameters vector 
*θ  as the 

parameters vector which corresponds to the best (optimal) approximator 

term ),( 
*θxu  of the optimal control signal ∗u of (7). Then 

*θ  is defined as  

]min[suparg
*

w=θ  ,     with     )(),(
*

xuxuw ∗−= θ                                        (21) 

w is the minimum approximation error . Thus, the error Eq. (19) can be 

rewritten as  

].)),(),(.([.
*

dwbxuxubbeAe cc ++−+= θθ&                                                      (22) 

Based on Eq. (10) we have  

)(.),( 1 xxu
T ξθθ = ,  and  )(.),( 1

**
xxu

T

ξθθ =                                                    (23) 

let *θθϕ −=   and using Eq. (23), thus Eq. (22) becomes  

)()(1 dbwbxbbeAe c

T

cc +++= ξϕ&                                                                      (24)  

Define the Lyapunov function candidate      

ϕϕ
γ

TT b
ePeV

.22

1
+=                                                                                              (25)  

where γ is a positive constant and P is a solution of the Lyapunov equation 

QPAPA c

T

c −=+.   with   0>Q .                                                                       (26) 

Differentiate V with respect to time 

ϕϕ
γ

ϕϕ
γ

&&&&& TTTT bb
ePeePeV

222

1

2

1
+++=                                                          (27) 

using Eqs. (24) and (26), we have  

ϕϕ
γ

ξϕ && T

c

TT

c

TT b
dwbPbexbPbeeQeV ++++−= ).()(.

2

1
1                                 (28) 

Let Pn be the last column of P, and using Eq. (20), resulted 

n

T

c

T
PePbe =                                                                                                       (29)  

Substituting Eq. (29) into Eq. (28), will obtain   

)(])(.[
2

1
1 dbwPbexPe

b
eQeV c

T

n

TTT
++++−= ϕξγϕ

γ
&&                                      (30) 

If the adaptive law is chosen as  

)(1 xPe n

T ξγθ −=&                                                                                                  (31) 

This will result in  
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0))(.( 1 =+ ϕξγϕ
γ

&xPe
b

n

TT                                                                                   (32) 

Using the fact that θθθϕ &&&& =−= * , because the optimal parameters vector 
*θ  

is constant and obviously its derivative is zero, i.e., 0
*

=θ , then Eq. (30) becomes  

)(
2

1
dbwPbeeQeV c

TT
++−=&                                                                           (33) 

or 

1
2

1
wPbeeQeV c

TT
−−=&                                                                                      (34) 

where  

)(1 dbww +−=                                                                                                    (35) 

As a summarization from the above development, the obtained adaptive law 

for the RBF network parameters vectorθ  is   

)(. 1 xPe n

T ξγθ −=&                                                                                                 (36)  

The overall scheme of the direct RBF adaptive controller is shown in Fig. 1.  

The following theorem shows the properties of the direct adaptive RBF controller. 

 

Theorem 

Consider the nonlinear plant (1) with the control law ),( θxuu = given by Eq. (23) 

and updating law given by Eq. (36) for the parameters vectorsθ , then, the overall 

scheme guarantees that 

i) The tracking error )(te  converges to a compact set eΩ  defined by 













≤=Ω
µ

δ
eee /:                                                                                           (37) 

where δ and µ  are two positive constants 

ii) if 1w  in Eq. (34) is squared integrable, that is ∫
∞

∞<
0

2

1 )( dttw , then 

( ) 0lim =
∞→

te
t

. 

 

Proof of the theorem 

The following Barbalat’s lemma is used to proof the part ii) of the theorem. 

Barbalat’s lemma [15, 17]  

if 2)( Lte ∈  (squared integrable, i.e., ∫
∞

∞<
0

2
)( dtte )), and ∞∈ Lte )( (bounded), 

and )(te&  ∈  ∞L (bounded), then ( ) 0lim =
∞→

te
t

. Let us now start with the proof of 

the first part of the theorem  
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     i) Let minQλ  be the minimum eigenvalue of Q then, from Eq. (34), that gives  

1

2

min
2

1
wPbeeV c

T

Q −−≤ λ&                                                                                (38) 

which can be written as 

2

1

2

1

22

1

2

min
2

1

2

1

2

1

2

1
..

2

1
wPbwPbeewbPeeV ccc

T

Q −+−+−−≤ λ&  

                      
2

1

2

1

2min
)(

2

1

2

1

2

1
wPbewPbe cc

Q
+−+

−
−=

λ
                         (39) 

which can be simplified to   

2

1

2min

2

1

2

1
wPbeV c

Q
+

−
−≤

λ
&                                                                          (40) 

because the term 
2

1)(
2

1
wPbe c+  is greater than or equal to 0.  

Choose Q such that 1min >Qλ   because it is determined by the designer. It 

follows that  

δµ +−≤
2

eV&                                                                                                    (41) 

where 
2

1min −
=

Qλ
µ , and 

2

1
2

1
wPbc=δ                                                      (42) 

From Eq. (41) It can be concluded that 0<V&  if 
µ

δ
>e . The compact set 

is defined as 













≤=Ω
µ

δ
eee /:                                                                                           (43) 

From Eq. (35), we have ).(1 dwbw +−=  where the minimum approximation 

error w in Eq. (21) can be made arbitrarily small by using an appropriate number 

of radial basis functions approximators [1, 2]. The constant control gain b and the 

disturbance d are assumed to be bounded. Hence the quantity w1 is bounded, and 

based on this, from Eq. (42), δ is bounded, thus the set eΩ  in Eq. (43) is bounded. 

Now V&  is negative as long as )(te is outside the compact set eΩ , according 

to Lyapunov stability theory, it can be concluded that the error )(te is bounded 

and will converge to eΩ .  

     ii) Integrating both sides of Eq. (40), we obtain 

ττ
λ

deVtV

t
Q

∫
−

−≤−
0

2min
)(

2

1
)]0()([ ττ dwPb

t

c ∫+
0

2

1

2
)(.

2

1
                          (44)  

Then  
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)]()0([
1

2
)(

min0

2
tVVde

Q

t

−
−

≤∫ λ
ττ ττ

λ
dwPb

t

c

Q
∫−

+
0

2

1

2

min

)(..
1

1
                 (45) 

This will result in 

])(.))()0((2[
1

1
)(

0

2

1

2

min0

2
ττ

λ
ττ dwPbtVVde

t

c

Q

t

∫∫ ++
−

≤                         (46) 

As shown by Wang [15], this implies that if 1w ∈L2 (i.e., squared integrable), 

then from Eq. (46) )(te ∈L2, and based on the conclusion above, according to 

Lyapunov stability theory, )(te is bounded. On the other hand from Eq. (24) 

)(te& ∈ ∞L (bounded) because all elements of its right hand side are bounded. 

Using Barbalat’s lemma mentioned above, it can be concluded that ( ) 0lim =
∞→

te
t

. 

Remark  

In the above developments, global stability results are provided using Lyapunov 

theory without use of the compensatory (or a supervisory) control term in addition 

to the control law as usually done in most cases as mentioned in the introduction.  

 

3.3. Design of the direct adaptive RBF controller 

From the above analysis, the design of the direct RBF adaptive controller can be 

summarized in the following steps  

Step 1: Off-line computations 

Define the number of basis functions with centres uniformly cover the domain of 

data variation for the RBF network.  

• Specify the parameters 10 ,..., −nkk  for the RBF network such that all roots 

of 0........ 0

1

1

1

1 =++++ −
− ksksks

n

n

n  are in the open left-half plane. 

• Specify a positive definite n×n matrix Q, where n is the degree of the 

system.  

• Solve the Lyapunov Eq. (26) to obtain a symmetric P > 0.  

• Select a positive scalar values γ .        

• give initial values to the parameters vector (connection weights)θ  of the 

RBF network (controller) )(),( 1 xxu
Tξθθ = . 

In this work, both the centres of the basis functions and the connections 

weights are online adjusted. The k-means algorithm [24] is used for the centres 

adjustment. The connections weights are adapted and changed according to a law 

derived using Lyapunov stability theory. 

 

Step 2: On-line adaptation 

• Apply the feedback control law Eq. (23), i.e., )(.),( 1 xxu
T ξθθ = (the output 

of the RBF network) to the plant (1). 
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• Use the adaptive law Eq. (36) to adjust the controller parameter vector 

(controller connections weights)θ . 

• Use the k-means algorithm described in section 3.2.1 to adjust the centres 

of the radial basis functions for the RBF network. 

 

 

4. Simulation Results 

In this paper the direct adaptive RBF controller as depicted in Fig. 1 was applied 

to control the level in a Three Tank System (Example 1), a nonlinear unstable 

system (Example 2) and a two dimensional non linear system (Example 3). 

 

 

 

Fig. 1. The Direct RBF Adaptive Controller. 

 

4.1.  Example 1 

In this first example, we apply the performance of our proposed RBF adaptive 

system to control the level in a Three Tank System and compare its behaviour to a 

proportional integral PI controller. The Three-Tank System [26] is a benchmark 

process widely used for modelling and control strategies for nonlinear systems. 

The nonlinear controlled system as depicted by Fig. 2 consists of three plexiglass 

cylinders T1, T2 and T3 with identical cross-sectional area A which are 

interconnected in series by two connecting pipes. The liquid leaving T2 is 

collected in a reservoir from which pumps 1 and 2 (driven by DC motors) supply 

tanks T1 and T2 with flow rates Q1 and Q2. All three tanks are equipped with 

piezo-resistive pressure transducer for measuring the level of the liquid (L1, L2 

and L3 in cm). The tanks are coupled by two connecting cylindrical pipes with a 

cross section S and an outflow coefficient 31 µµ = . The nominal outflow is 

located at tank T2, it also has a circular cross section of S and an outflow 

coefficient 2µ . The connecting pipes and the tanks are additionally equipped with 

manually adjustable valves and outlets for the purpose of simulating clogs as well 

as leaks. In this example, the Three Tank System as a SISO system was 

considered, i.e., we will be interested to control the level L2 in the tank T2 by the 

flow rate Q2.  

The dynamic equation describing the SISO Three Tank System [26] is as 

follows 

222
2 2gLSQ

dt

dL
A µ−=                                                                                    (47) 
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Fig. 2. The Structure of the Three Tank System. 

 

 

where,  

S = 0.5 cm
2
, 4896.032 == µµ , A = 154 cm

2
, g = 9.81×100 cm/s

2 
is the 

universal gravitation and 2Lxy ==  is the level in Tank2. The reference signal 

will be 21 Lmyxm m == . 

The other parameters are chosen as 07.0=γ , step size 1=dt , 10 =k  in order 

to have all roots of 0. 0 =+ ks  in the open left-half plane, choose Q in Eq. (26) as 

025 >=Q , where the minimum eigenvalue of Q, i.e., 125min >=Qλ  which will 

satisfy the transition from Eqs. (40) to (46) for minQλ in the proof of the theorem. 

Then 5.12=P  was obtained by solving Eq. (26). The RBF network has five 

radial basis functions. The controller parameters θ  are initialised to random 

values in the interval [0    1]. The centres of the basis functions are uniformly 

distributed in the interval [aa    aa14 ], where 13.1=aa  is a constant. The RBF 

network has two inputs ][ deex =   with myye −= is the error, and de is the 

variation of error. The used basis functions are Gaussian functions under the form 

of (11) with a width 5=σ . The initial condition ( 0)0()0( 2 == Lx cm) is used in 

the simulation. For the first case ( 9000 <≤ t s), the external disturbance d in Eq. 

(1) will not be taken in consideration. For all cases of simulation, the used PI 

parameters are kp=7.5 (proportional action) and ki=6.5 (integral action). 

Simulation results are shown in Figs. 3 and 4, where the corresponding results to 

the RBF controller are in dotted while those corresponding to the PI controller are 

in continuous and the reference signal is in dashed. Figure 3 shows the evolution 

of the level L2 in Tank2. Figure 4 shows the corresponding control input. The first 

time interval of Fig. 3 shows that the system output (level in Tank2) has got the 

reference rapidly than with the PI controller and in the second and third time 

intervals, the response has less overshoot.  



110       M. Bahita and K. Belarbi                         

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

Also, in order to check the ability of our controller against perturbations, the 

external disturbance d in Eq. (1) will be taken in consideration in the interval 

( 1200900 ≤≤ t s), where the disturbances on the level in Tank2 are introduced as 

follows: create a clogging, i.e., closing the nominal outflow valve of tank T2 with 

degree of 50% at time 900=t s. In other words, in tank T2, the cross section S of 

the nominal outflow valve will take the value S = 0.5/2 cm
2
 at 900=t s instead of 

the nominal value S = 0.5 cm
2
. Thus, the system equation (47) will be rewritten as 

222
2 2)2/( gLSQ

dt

dL
A µ−=                                                                             (48) 

which can be written as 

22222
2 2)2/(2 gLSgLSQ

dt

dL
A µµ +−=                                                       (49) 

Based on the non perturbed system equation (47), the perturbed new system 

equation (49) was compared with the global system equation in (1), then the 

external disturbance d can be expressed as  

22 2)2/( gLSd µ=                                                                                             (50) 

 

Fig. 3. The Level in Tank T2 with the RBF Controller (…)                           

and with the PI Controller (-). 

 

Clearly, from Eq. (50), the external disturbance d is bounded. In this case, 

simulation results are shown in the remaining time interval ( 1200900 ≤≤ t s) of 

the same previous Figs. 3 and 4. Clearly, the disturbances are suppressed rapidly 

with our RBF controller than with the PI controller. As a concluding remarks, 

from these figures, the proposed RBF controller was able to stabilise the level of 

the liquid in tank T2 at each interval and also was able to eliminate disturbances 
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introduced through the outflow pipe of tank T2 in a better manner than with the PI 

controller, confirming also the robust property of the RBF system without the use 

of the supervisory term in the control law as discussed in the introduction.  

 

 

Fig. 4. The Control Signals of the RBF Controller (…)                                    

and of the PI controller (-). 

 

4.2. Example 2 

In this example, the direct adaptive RBF controller was applied to regulate to the 

origin an unstable system where the external disturbance d in Eq. (1) will not be 

taken in consideration as used in [14, 15] 

)(
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1
)(

)(
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tu
e

e
tx

tx

tx

+
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−
=

−
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&                                                                                          (51) 

From Eq. (51), it is clear that 
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tx
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−

−

+

−
=&  > 0 for 0)( >tx , and 
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1
)(

tx

tx

e

e
tx

−

−

+

−
=& < 0 for 0)( <tx . The initial condition is 1)0( =x . According to 

the steps of the design procedure given in section 3.3, choosing first the number 

of radial basis functions. In control application the number of radial basis function 

is usually chosen between four and ten. Here, five radial basis functions are 

chosen. The centres of the basis functions are uniformly distributed in the interval 

[-2     2].  Since the degree of the system is 1=n , the error polynomial is 

00 =+ ks , we set 2.20 =k , so that its root is in the open left-half plane, choosing 

also Q = 12. Based on this, we obtain: 2.20 =−= kAc  (see Eq. (20)), and by 

solving Eq. (26) we obtain P = 2.7273. Other choices have been tried; this last 

value has given a satisfactory transient performance. The step size for the system 

is 0.2, and the weights adaptation step is set to γ = 2.2. Smaller values give slower 
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adaptations and higher values produce faster adaptation with a risk of instability. 

The parameters iθ are all initialised to 0. Figure 5 shows the system state )(tx  and 

the desired position )(tym . From this figure it is clear that the proposed RBF 

direct adaptive control could regulate the plant to the origin. Figure 6 shows the 

corresponding control input )(tu . Clearly both the state and the control signal are 

bounded. Compared with the result in [14, 15], a good improvement on our 

system performance is observed, especially the response time (2.3 s in our system 

and 8 s in [14] and 11 s in [15]). 

 

     

Fig. 5. The System State x(t) and the Desired Position ym(t).  

 

 

Fig. 6. The Control Input u(t).  
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4.3. Example 3 

In this example, consider a two dimensional non linear system controlled in [9] 

21 xx =&  

).(
.

).sin(
.

.

)..4sin(
.4

2

2

2

1

1
2 tu

x

x

x

x
x +
















=

π

π

π

π
&                                                           (52) 

The direct adaptive RBF controller is applied to control the system state )(1 tx  

to track a desired trajectory which is specified as the output of a second order with 

a bandwidth driven by a unity amplitude, 0.5 mean,  square wave [9] as depicted 

in Fig. 7. Five radial basis functions are chosen. The centres of the basis functions 

are uniformly distributed in the interval [-0.5   3].  Since the degree of the system 

is n = 2 the error polynomial is 0. 01

2 =++ ksks , setting 20 =k  and 31 =k , so 

that all their roots are in the open left-half plane. The step size for the system is 

0165.0=dt , the step size for the weights adaptation law is set to γ = 75. 

Choosing 0)10,10( >= diagQ , then by solving Eq. (26), it results 









=

5.25.2

5.25.12
P                                                                                                   (53)  

The parameters iθ  are initialised to zero. Figure 7 shows the system state 

)(1 tx and the desired position )(tym . It is clear from this figure that the system 

state )(1 tx  tracks the desired trajectory )(tym  perfectly in comparison with the 

result in [9]. Figure 8 shows the corresponding control input )(tu . Figure 9 shows 

the corresponding velocity of the system )(2 tx  and the desired velocity )(tym
& .  

 

 

Fig. 7. The System State x1(t) and the Desired Position ym(t).  
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Fig. 8. The Control Input u(t). 

 

      Fig. 9. The Velocity of the System x2(t) and the Desired Velocity )(tym
& . 

Now, in order to check the ability of our controller against perturbations, 

considering the fallowing in Eq. (1): assuming that the external disturbance d is 

different from zero ( 0)( ≠td ), and the control gain b is taken as a non unity gain 

( 1≠b ). Based on the work in [9] where the term  

)]5.0)((3sin[2))(( 1 −+= txtxb π                                                                          (54) 

is taken as a non unity gain and )(td is zero in his second case. In our work, as 

the control gain b is constant, assuming 

(i) 2=b  which is the first term of Eq. (54).  

(ii) )]5.0)((3sin[)( 1 −= txtd π , which is the second term of Eq. (54).  
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From above, it is clear that d and ))(( txb are bounded. Figure 10 shows that the 

system state x1(t) could track the desired trajectory  ym(t) perfectly with a very small 

overshot with comparison to the previous case (without a perturbation). Figures 11 

and 12 show respectively the corresponding control input u(t) and the velocity of 

the system x2(t) with the desired velocity )(tym
& . From these figures, the robust 

property and smoothness of our RBF adaptive controller are confirmed without the 

use of the supervisory term in the control law.  

 

 

Fig. 10. The System State )(1 tx  and                                                                         

the Desired Position )(tym in Perturbation Case. 

 

Fig. 11. The Control Input u(t) in Perturbation Case. 
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Fig. 12. The Velocity of the System x2(t) and                                                     

the Desired Velocity )(tym
&  in Perturbation Case. 

 

5.  Conclusions 

In this paper, a stable direct adaptive control scheme for a class of unknown 

nonlinear dynamic systems was developed. For this purpose an on-line RBF (Radial 

Basis Function) neural network system was used to approximate the ideal control 

signal. Both the centres of the basis functions and the connections weights in the 

RBF network were online adjusted. The k-means algorithm was used for the centres 

adjustment, and the connections weights are adapted and changed according to a 

law derived using Lyapunov stability theory. The proposed method could guarantee 

the stability of the resulting closed-loop system in the sense that all signals involved 

were uniformly bounded. All this was achieved without the use of the supervisory 

term in the control law.  Finally, the stable direct adaptive RBF controller was used 

to control the level in a Three Tank System (Example 1) an nonlinear unstable 

system (Example 2) and a two dimensional non linear system (Example 3). The 

results were encouraging in spite of the presence of disturbances confirming the 

robust and smoothing capability of our RBF system. 

 

References 

1. Chen, T.P.; and Chen, H. (1995). Approximation capability to functions of 

several nonlinear functionals, and operators by radial basis function neural 

networks. IEEE Transactions on Neural Networks, 6(4), 904-910.  

2. Poggio, T.; and Girosi, F. (1990). Networks for approximation and learning. 

Proceedings of the IEEE, 78(9), 1481-1497. 

3. Cheng-Wu, C. (2009). Modeling and control for nonlinear structural systems 

via a NN-based approach. Expert Systems with Applications, 36(3), 4765-4772. 



Neural Stable Adaptive Control for a Class of Nonlinear Systems      117 

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

4. Bouchard, M.; Paillard, B.; and Le Dinh, C.T. (1999). Improved training of 

neural networks for the nonlinear active control of sound and vibration. IEEE 

Transactions on Neural Networks, 10(2), 391-401. 

5. Hwang, J.D.; and Hsiao, F.H. (2003). Stability analysis of neural-network 

interconnected systems. IEEE Transactions on Neural Networks, 14(1), 201-208. 

6. Narendra, K.S.; and Parthasarathy, K. (1990). Identification and control of 

dynamical systems using neural networks, IEEE Transactions on Neural 

Networks, 1(1), 4-27. 

7. Psaltis, D.; Sideris, A.; and Yamamura, A. (1988). A multilayered neural 

network controller. IEEE Control Systems Magazine, 8, 17-21. 

8. Polycarpou., M.M.; and Mears, M. (1998). Stable adaptive tracking of 

uncertain systems using nonlinearly parameterized online approximators, 

International Journal of Control, 70, 363-384. 

9. Sanner, R.M.; and Slotine, J.J.E. (1992). Gaussian networks for direct 

adaptive control. IEEE Transactions on Neural Networks, 3(6), 837-863. 

10. Zhang, T.; Ge, S.S.; and Hang, C.C. (1999). Design and performance analysis 

of a direct adaptive controller for nonlinear systems. Automatica, 35(11), 

1809-1817. 

11. Astrom, K.J.; and Wittenmark, B. (1995). Adaptive control. Addison Wesley 

12. Gang, F. (2006). A survey on analysis and design of model-based fuzzy 

control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676-697. 

13. Tong, S.; Wang, T.; and Tang, J.T. (2000). Fuzzy adaptive output tracking 

control of nonlinear systems. Fuzzy Sets and Systems, 111(2), 169-182. 

14. Tsay, D.L.; Chung, H.Y.; and Lee, C.J. (1999). The adaptive control of 

nonlinear systems using the Sugeno-type of fuzzy logic. IEEE Transactions 

on Fuzzy Systems, 7(2), 225-229.  

15. Wang, L.X. (1993). Stable adaptive fuzzy control of nonlinear systems. IEEE 

Transactions on Fuzzy Systems, 1(2), 146-155. 

16. Tang, Y.; Zhang, N.; and Li, Y. (1999). Stable fuzzy adaptive control for a 

class of nonlinear systems. Fuzzy Sets and Systems, 104(2), 279-288. 

17. Slotine, J.J.E.; and Weiping, L. (1991). Applied nonlinear control. Prentice Hall. 

18. Wang, C.H.; Liu, H.; and Lin, T. (2002). Direct adaptive fuzzy-neural control 

with state observer and supervisory controller for unknown nonlinear 

dynamical systems. IEEE Transactions on Fuzzy Systems, 10(1), 39-49. 

19. Su, C.Y.; and Stepanenko, Y. (1994). Adaptive control of a class of nonlinear 

systems with fuzzy logic. IEEE Transactions on Fuzzy Systems, 2(4), 285-294. 

20. Ge, S.S.; Hang, C.C.; and Zhang, T. (1999). Adaptive neural network control 

of nonlinear systems by state and output feedback. IEEE Transactions on 

Systems, Man, and Cybernetics part B, Cybernetics, 29(6), 818-828. 

21. Hugang, H.; Chun-Yi, S.; and Yury, S. (2001). Adaptive control of a class of 

nonlinear systems with nonlinearly parameterized fuzzy approximators. IEEE 

Transactions on Fuzzy Systems, 9(2), 315-323. 

22. Zheru, C.; and Hong, Y. (1995). Image segmentation using fuzzy rules derived 

from k-means clusters. Journal of Electronic Imaging, 4(2), 199- 206. 

23. Haykin, S. (1994). Neural networks. A comprehensive foundation. Prentice Hall. 



118       M. Bahita and K. Belarbi                         

 

 
 
Journal of Engineering Science and Technology         February  2012, Vol. 7(1) 

 

24. Darken, C.; and Moody, J. (1990). Fast adaptive k-means clustering: Some 

empirical results. International Joint conference on Neural Networks, 2, 233-238. 

25. Chen, S.; Billings, S.A.; and Grant, P.M. (1992). Recursive hybrid algorithm 

for nonlinear systems identification using radial basis function networks. 

International journal of Control, 55, 1051-1070. 

26. GmbH, A. AMIRA DTS200. (2002). Laboratory Setup Three-Tank-System, 

AMIRA GmbH, Disburg, Germany. 


