117 research outputs found
A Family of Interleaved High Step-Up DC-DC Converters by Integrating a Voltage Multiplier and an Active Clamp Circuits
A family of interleaved current-fed high step-up dc-dc converters are
introduced and analyzed here by combining a voltage multiplier (VM) and an
active clamp circuit for high-voltage high-power applications. Low input
currents and output voltages ripples values and high voltage-gains
characteristics of these converters make them suitable for lots of dc-dc
applications. All power devices operate entirely under soft switching
conditions, even when wide load and input voltage variations are applied. Thus,
they can be designed at high switching frequencies to reduce passive components
sizes to achieve high-power density, one of the main targets of the power
electronics researches. Also, their input and output ports common ground
simplifies the gate-drives and control circuits. To verify the given analyses
and simulations, a 120-320 V to 1 kV, 50-1300 W three-stage two-leg prototype
converter has been implemented at 100 kHz. Based on the experimental results,
maximum efficiency of 96.5% is achieved.Comment: 14 pages, 15 figure
Business Environment and Strengthening of the Economy: Selected Countries of Western Asia
The business environment is one of the factors that affect the performance and growth of firms. The business environment is a set of conditions that affect the state of the economy. This paper examines how improvement of the business environment influences strengthening of the economy in the selected countries of western Asia (23 countries) by using panel data method for the period from 2010 to 2017. In other words, we hypothesise that the business environment positively and significantly affects strengthening of the economy in these countries. The paper aims to examine the explanatory variables of strengthening of the economy. The dependent variable is the sum of budget deficit and the facilities of financial and credit institutions to the state budget minus the tax revenue to the state budget. The independent variables are business index, good governance index, economic misery index, foreign direct investment, gross fixed capital formation, government expenditures and population growth. The research findings indicate that the business environment has a positive and significant impact on strengthening of the economy. Thus, in order to strengthen the economy in the considered countries, we suggest using some approaches facilitating the business environment, particularly for productive sectors of the economy, focused on generating productive employment. 1 © Amiri H., Barani Beiranvand M. Text. 2020
Simultaneous RPD and SVC Placement in Power Systems for Voltage Stability Improvement Using a Fuzzy Weighted Seeker Optimization Algorithm
Voltage stability issues are growing challenges in many modern power systems. This paper proposes optimizing the size and location of Static VAR Compensator (SVC) devices using a Fuzzy Weighted Seeker Optimization Algorithm (FWSOA), as an effective solution to overcome such issues. Although the primary purpose of SVC is bus voltage regulation, it can also be useful for voltage stability enhancement and even real power losses reduction in the network. To this aim, a multi-objective function is presented which includes voltage profile improvement, Voltage Stability Margin (VSM) enhancement and minimization of active power losses. Voltage stability is very close to Reactive Power Dispatch (RPD) in the network. Therefore, in addition to voltage regulation with locating SVCs, considering all of the other control variables including excitation settings of generators, tap positions of tap changing transformers and reactive power output of fixed capacitors in the network, simultaneous RPD and SVC placement will be achieved. Simulation results on IEEE 14 and 57-bus test systems, applying Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Seeker Optimization Algorithm (SOA) and FWSOA verify the efficiency of FWSOA for the above claims
The distribution of ocular biometry in Iranian school children
Purpose: To determine the distribution of axial length (AL), vitreous chamber depth (VCD), anterior chamber depth (ACD), lens thickness (LT), lens power (LP), radius of curvature (CR), and white-to-white corneal diameter (WTW) in the 14-20 year age range. Methods: In a cross-sectional study, sampling was done from Aligoodarz high schools using multistage simple cluster sampling. For all students, visual acuity and non-cycloplegic refraction tests were performed. Biometric components were measured using Allegro Biograph (WaveLight AG, Erlangen, Germany). Results: In this report, data from 434 cases was used in the analysis; of these 222 (51.2) were females. Mean and 95 confidence intervals of AL, VCD, ACD, LT, LP, CR, and WTW in the studied sample were 23.4 mm (23.32 to 23.48), 16.82 mm (16.74 to 16.9), 3.14 mm (3.12 to 3.16), 3.44 mm (3.42 to 3.46), 22.65 diopter (22.47 to 22.83), 7.74 mm (7.72 to 7.76), and 12.26 mm (12.22 to 12.3), respectively. In the multiple regression model, AL, VCD, ACD, CR, and WTW was significantly higher in boys while mean LT and LP were significantly higher in girls. The distributions of AL, ACD, LT, and CR were significantly different from normal. The distributions of AL, LT, and CR were leptokurtic, unlike ACD which had a platykurtic distribution pattern. Conclusion: In this report, we describe the normal ranges of ocular biometric components in a sample population of 14-20 year old Iranians. ACD in this study was shorter and WTW was larger than previous studies and other components were in the midrange. More studies throughout Iran are needed to verify a shorter ACD and larger WTW. All components of ocular biometry showed significant inter-gender differences. © 2014 by the Iranian Society of Ophthalmology
A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data
Lithological mapping is a critical aspect of geological mapping that can be useful in studying the mineralization potential of a region and has implications for mineral prospectivity mapping. This is a challenging task if performed manually, particularly in highly remote areas that require a large number of participants and resources. The combination of machine learning (ML) methods and remote sensing data can provide a quick, low-cost, and accurate approach for mapping lithological units. This study used deep learning via convolutional neural networks and conventional ML methods involving support vector machines and multilayer perceptron to map lithological units of a mineral-rich area in the southeast of Iran. Moreover, we used and compared the efficiency of three different types of multispectral remote-sensing data, including Landsat 8 operational land imager (OLI), advanced spaceborne thermal emission and reflection radiometer (ASTER), and Sentinel-2. The results show that CNNs and conventional ML methods effectively use the respective remote-sensing data in generating an accurate lithological map of the study area. However, the combination of CNNs and ASTER data provides the best performance and the highest accuracy and adaptability with field observations and laboratory analysis results so that almost all the test data are predicted correctly. The framework proposed in this study can be helpful for exploration geologists to create accurate lithological maps in other regions by using various remote-sensing data at a low cost.</jats:p
Population health outcomes in South Korea 1990-2019, and projections up to 2040: a systematic analysis for the Global Burden of Disease Study 2019
BACKGROUND: South Korea has one of the longest operating universal health coverage (UHC) systems. A comprehensive analysis of long-term trajectories of morbidity and mortality in the South Korean population after the inception of UHC is needed to inform health-care policy and practice. METHODS: We used data from the Global Burden of Disease Study (GBD) 2019 to present estimates of cause-specific mortality, incidence, prevalence, years of life lost (YLLs), years of life lived with disability, and disability-adjusted life-years (DALYs) in South Korea from 1990 to 2019. We also examined forecasted estimates of YLLs up to 2040 to investigate likely future changes in disease burden. Finally, we evaluated GBD estimates from seven comparator countries to place disease burden in South Korea within a broader context. FINDINGS: Age-standardised DALYs related to non-communicable diseases (NCDs) decreased by 43·6% (95% uncertainty interval [UI] 39·4-47·9) and mortality by 58·8% (55·9-60·5) from 1990 to 2019. In 2019, the ratio of male to female age-standardised rates of YLLs in South Korea was higher than the global average for 75·9% (22 of 29 diseases) of leading causes, indicating a disproportional disease burden on males in South Korea. Among risk factors, tobacco use accounted for the highest number of 2019 deaths (44 470 [95% UI 37 432-53 989]) in males and high systolic blood pressure for the highest number (21 014 [15 553-26 723]) in females. Among the top ten leading causes of YLLs forecast in South Korea in 2040, nine were NCDs, for both males and females. INTERPRETATION: Our report shows a positive landscape of population health outcomes in South Korea following the establishment of UHC. However, due in part to the effects of population ageing driving up medical expenditures for NCDs, financial pressures and sustainability challenges associated with UHC are pressing concerns. Policy makers should work to tackle population ageing and allocate resources efficiently by prioritising interventions that address the leading causes of death and disability identified in this study. FUNDING: Bill & Melinda Gates Foundation
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
- …