118 research outputs found

    The environment drives microbial trait variability in aquatic habitats

    Get PDF
    A prerequisite to improve the predictability of microbial community dynamics is to understand the mechanisms of microbial assembly. To study factors that contribute to microbial community assembly, we examined the temporal dynamics of genes in five aquatic metagenome time-series, originating from marine offshore or coastal sites and one lake. With this trait-based approach we expected to find gene-specific patterns of temporal allele variability that depended on the seasonal metacommunity size of carrier-taxa and the variability of the milieu and the substrates to which the resulting proteins were exposed. In more detail, we hypothesized that a larger seasonal metacommunity size would result in increased temporal variability of functional units (i.e., gene alleles), as shown previously for taxonomic units. We further hypothesized that multicopy genes would feature higher temporal variability than single-copy genes, as gene multiplication can result from high variability in substrate quality and quantity. Finally, we hypothesized that direct exposure of proteins to the extracellular environment would result in increased temporal variability of the respective gene compared to intracellular proteins that are less exposed to environmental fluctuations. The first two hypotheses were confirmed in all data sets, while significant effects of the subcellular location of gene products was only seen in three of the five time-series. The gene with the highest allele variability throughout all data sets was an iron transporter, also representing a target for phage infection. Previous work has emphasized the role of phage-prokaryote interactions as a major driver of microbial diversity. Our finding therefore points to a potentially important role of iron transporter-mediated phage infections for the assembly and maintenance of diversity in aquatic prokaryotes

    Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea

    Get PDF
    The Black Sea is the world’s largest anoxic basin and a model system for studying processes across redox gradients. In between the oxic surface and the deeper sulfidic waters there is an unusually broad layer of 10–40 m, where neither oxygen nor sulfide are detectable. In this suboxic zone, dissolved phosphate profiles display a pronounced minimum at the upper and a maximum at the lower boundary, with a peak of particulate phosphorus in between, which was suggested to be caused by the sorption of phosphate on sinking particles of metal oxides. Here we show that bacterial polyphosphate inclusions within large magnetotactic bacteria related to the genus Magnetococcus contribute substantially to the observed phosphorus peak, as they contain 26–34% phosphorus compared to only 1–5% in metal-rich particles. Furthermore, we found increased gene expression for polyphosphate kinases by several groups of bacteria including Magnetococcaceae at the phosphate maximum, indicating active bacterial polyphosphate degradation. We propose that large magnetotactic bacteria shuttle up and down within the suboxic zone, scavenging phosphate at the upper and releasing it at the lower boundary. In contrast to a passive transport via metal oxides, this bacterial transport can quantitatively explain the observed phosphate profiles.We are grateful for the competent technical assistance of Ronny Baaske, Christian Burmeister, Christin Laudan and Christian Meeske. We are greatly indebted to Cindy Lee and Bo Barker JĂžrgensen for providing extremely helpful comments on an earlier version of the manuscript. Horst D. Schulz and RenĂ© Friedland are acknowledged for stimulating discussions on the modeling approach. We thank the captain and the crew of the R/V “Maria S. Merian” for the excellent support on board and the DFG (MSM33) and BMBF (01DK12043) for financing the cruise. The particle analysis was funded by the BMBF (03F0663A). S.B. was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint- project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). T. S. was funded by the German research foundation (DFG) (awarded to K.J., JU 367/16-1). Metagenome sequencing was done at the Swedish National Genomics Infrastructure (NGI) at SciLifeLab (Sweden).We are grateful for the competent technical assistance of Ronny Baaske, Christian Burmeister, Christin Laudan and Christian Meeske. We are greatly indebted to Cindy Lee and Bo Barker JĂžrgensen for providing extremely helpful comments on an earlier version of the manuscript. Horst D. Schulz and RenĂ© Friedland are acknowledged for stimulating discussions on the modeling approach. We thank the captain and the crew of the R/V “Maria S. Merian” for the excellent support on board and the DFG (MSM33) and BMBF (01DK12043) for financing the cruise. The particle analysis was funded by the BMBF (03F0663A). S.B. was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint- project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). T. S. was funded by the German research foundation (DFG) (awarded to K.J., JU 367/16-1). Metagenome sequencing was done at the Swedish National Genomics Infrastructure (NGI) at SciLifeLab (Sweden)

    BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data for the Baltic Sea

    Get PDF
    The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset

    Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship

    Get PDF
    Well-defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity–precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid

    Spotlights on Contemporary Family Life

    Get PDF
    Spotlights on Contemporary Family Life covers four issues of cross-cutting importance to families Structures and forms of families: issues relating to a diversification of families away from the ‘traditional nuclear family form’ are relatively uncontroversial from an academic perspective, but much more so for policy makers and family associations. Chapter 1 provides a thorough overview of the state of contemporary European families. Solidarities in families: too often the issue of an ‘ageing society’ is simply reduced to the problem of over-burdening social care systems, but longevity also represents opportunities for new kinds of solidarities inside families and family networks, and new relations between family members – not to mention the satisfaction felt by people who can continue to live fulfilling and rewarding lives long after they’re considered ‘elderly’. Chapter 2 gives voice to authors who identify these new opportunities and challenges. Demographic change: women are having fewer children and having them later in life. Having children is now a conscious decision and fertility rates have declined below the level required to sustain our current populations. At the same time we witness the ‘greying’ of Europe, which brings with it a whole host of opportunities and challenges. Chapter 3 raises important issues for policy makers today. Volunteering: inspired by family associations who could not survive without the support of volunteers, this chapter gives an overview of what’s known - and what isn’t - about volunteering. Coinciding with the European Year of Volunteering 2011, this chapter takes a timely look at the efforts that families put into volunteering across Europe and the important benefits that Europe gains from all of this combined voluntary effort. Linden Farrer and William Lay work for the Confederation of Family Organisations in the European Union (COFACE). This publication was produced by FAMILYPLATFORM, a project funded by the European Commission

    Sequential and Coordinated Actions of c-Myc and N-Myc Control Appendicular Skeletal Development

    Get PDF
    BACKGROUND: During limb development, chondrocytes and osteoblasts emerge from condensations of limb bud mesenchyme. These cells then proliferate and differentiate in separate but adjacent compartments and function cooperatively to promote bone growth through the process of endochondral ossification. While many aspects of limb skeletal formation are understood, little is known about the mechanisms that link the development of undifferentiated limb bud mesenchyme with formation of the precartilaginous condensation and subsequent proliferative expansion of chondrocyte and osteoblast lineages. The aim of this study was to gain insight into these processes by examining the roles of c-Myc and N-Myc in morphogenesis of the limb skeleton. METHODOLOGY/PRINCIPAL FINDINGS: To investigate c-Myc function in skeletal development, we characterized mice in which floxed c-Myc alleles were deleted in undifferentiated limb bud mesenchyme with Prx1-Cre, in chondro-osteoprogenitors with Sox9-Cre and in osteoblasts with Osx1-Cre. We show that c-Myc promotes the proliferative expansion of both chondrocytes and osteoblasts and as a consequence controls the process of endochondral growth and ossification and determines bone size. The control of proliferation by c-Myc was related to its effects on global gene transcription, as phosphorylation of the C-Terminal Domain (pCTD) of RNA Polymerase II, a marker of general transcription initiation, was tightly coupled to cell proliferation of growth plate chondrocytes where c-Myc is expressed and severely downregulated in the absence of c-Myc. Finally, we show that combined deletion of N-Myc and c-Myc in early limb bud mesenchyme gives rise to a severely hypoplastic limb skeleton that exhibits features characteristic of individual c-Myc and N-Myc mutants. CONCLUSIONS/SIGNIFICANCE: Our results show that N-Myc and c-Myc act sequentially during limb development to coordinate the expansion of key progenitor populations responsible for forming the limb skeleton

    Regulation of human CD4+ T cell differentiation

    Get PDF
    Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12RÎČ1/TYK2 and IFN-ÎłR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12RÎČ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation
    • 

    corecore