18 research outputs found

    Feasibility and Reliability of SmartWatch to Obtain 3-Lead Electrocardiogram Recordings

    Get PDF
    Some of the recently released smartwatch products feature a single-lead electrocardiogram (ECG) recording capability. The reliability of obtaining 3-lead ECG with smartwatches is yet to be confirmed in a large study. This study aimed to assess the feasibility and reliability of smartwatch to obtain 3-lead ECG recordings, the classical Einthoven ECG leads I-III compared to standard ECG. To record lead I, the watch was worn on the left wrist and the right index finger was placed on the digital crown for 30 s. For lead II, the watch was placed on the lower abdomen and the right index finger was placed on the digital crown for 30 s. For lead III, the same process was repeated with the left index finger. Spearman correlation and Bland-Altman tests were used for data analysis. A total of 300 smartwatch ECG tracings were successfully obtained. ECG waves’ characteristics of all three leads obtained from the smartwatch had a similar duration, amplitude, and polarity compared to standard ECG. The results of this study suggested that the examined smartwatch (Apple Watch Series 4) could obtain 3-lead ECG tracings, including Einthoven leads I, II, and III by placing the smartwatch on the described positions

    New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis

    Get PDF
    Aims: In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Material and methods: Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Results: Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. Conclusion: The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic therapy may result in improved outcomes

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Feasibility and Reliability of SmartWatch to Obtain 3-Lead Electrocardiogram Recordings

    No full text
    Some of the recently released smartwatch products feature a single-lead electrocardiogram (ECG) recording capability. The reliability of obtaining 3-lead ECG with smartwatches is yet to be confirmed in a large study. This study aimed to assess the feasibility and reliability of smartwatch to obtain 3-lead ECG recordings, the classical Einthoven ECG leads I-III compared to standard ECG. To record lead I, the watch was worn on the left wrist and the right index finger was placed on the digital crown for 30 s. For lead II, the watch was placed on the lower abdomen and the right index finger was placed on the digital crown for 30 s. For lead III, the same process was repeated with the left index finger. Spearman correlation and Bland-Altman tests were used for data analysis. A total of 300 smartwatch ECG tracings were successfully obtained. ECG waves’ characteristics of all three leads obtained from the smartwatch had a similar duration, amplitude, and polarity compared to standard ECG. The results of this study suggested that the examined smartwatch (Apple Watch Series 4) could obtain 3-lead ECG tracings, including Einthoven leads I, II, and III by placing the smartwatch on the described positions

    Feasibility and Reliability of SmartWatch to Obtain 3-Lead Electrocardiogram Recordings

    No full text
    Some of the recently released smartwatch products feature a single-lead electrocardiogram (ECG) recording capability. The reliability of obtaining 3-lead ECG with smartwatches is yet to be confirmed in a large study. This study aimed to assess the feasibility and reliability of smartwatch to obtain 3-lead ECG recordings, the classical Einthoven ECG leads I-III compared to standard ECG. To record lead I, the watch was worn on the left wrist and the right index finger was placed on the digital crown for 30 s. For lead II, the watch was placed on the lower abdomen and the right index finger was placed on the digital crown for 30 s. For lead III, the same process was repeated with the left index finger. Spearman correlation and Bland-Altman tests were used for data analysis. A total of 300 smartwatch ECG tracings were successfully obtained. ECG waves’ characteristics of all three leads obtained from the smartwatch had a similar duration, amplitude, and polarity compared to standard ECG. The results of this study suggested that the examined smartwatch (Apple Watch Series 4) could obtain 3-lead ECG tracings, including Einthoven leads I, II, and III by placing the smartwatch on the described positions

    Feasibility and Reliability of SmartWatch to Obtain 3-Lead Electrocardiogram Recordings

    No full text
    Some of the recently released smartwatch products feature a single-lead electrocardiogram (ECG) recording capability. The reliability of obtaining 3-lead ECG with smartwatches is yet to be confirmed in a large study. This study aimed to assess the feasibility and reliability of smartwatch to obtain 3-lead ECG recordings, the classical Einthoven ECG leads I-III compared to standard ECG. To record lead I, the watch was worn on the left wrist and the right index finger was placed on the digital crown for 30 s. For lead II, the watch was placed on the lower abdomen and the right index finger was placed on the digital crown for 30 s. For lead III, the same process was repeated with the left index finger. Spearman correlation and Bland-Altman tests were used for data analysis. A total of 300 smartwatch ECG tracings were successfully obtained. ECG waves’ characteristics of all three leads obtained from the smartwatch had a similar duration, amplitude, and polarity compared to standard ECG. The results of this study suggested that the examined smartwatch (Apple Watch Series 4) could obtain 3-lead ECG tracings, including Einthoven leads I, II, and III by placing the smartwatch on the described positions

    Surface analysis of infected valves.

    No full text
    <p>For surface analysis using scanning electron microscopy (SEM), infected native (A-C; patient 3) and prosthetic (D-F; patient 7) heart valve tissues were cut into small pieces and fixed. After pretreatment and exposure to osmium tetroxide, tissues were dehydrated and mounted on standard SEM stubs with carbon tape. The cured samples were finally sputter-coated with a platinum layer and evaluated with a scanning electron microscope. (A-C) SEM images of the surface of an infected native valve. (A) Overview. (B) Epithelial cell boundaries are discernable. Inset: note that few bacteria are attached to the smooth surface and that these seem to be often damaged (arrow). (C) At higher magnification scattered bacteria showing apparently intact morphology (arrow) can also be found. (D-F) Ultrastructure images of infected biological prosthetic valve. (D) Overview. (E) The surface is characterized by deep holes and cracks where microbes may be concealed; the surface appears rough. Inset: note that the few bacteria attached to the outside often seem to be damaged (arrow). (F) At higher magnification a number of apparently intact bacteria (arrows) showing different morphologies can be found; note the fibrous structure of the substrate, providing ideal adhesion sites.</p
    corecore