9,634 research outputs found

    A new analysis of 14O beta decay: branching ratios and CVC consistency

    Full text link
    The ground-state Gamow-Teller transition in the decay of 14O is strongly hindered and the electron spectrum deviates markedly from the allowed shape. A reanalysis of the only available data on this spectrum changes the branching ratio assigned to this transition by seven standard deviations: our new result is (0.54 \pm 0.02)%. The Kurie plot data from two earlier publications are also examined and a revision to their published branching ratios is recommended. The required nuclear matrix elements are calculated with the shell model and, for the first time, consistency is obtained between the M1 matrix element deduced from the analog gamma transition in 14N and that deduced from the slope of the shape-correction function in the beta transition, a requirement of the conserved vector current hypothesis. This consistency is only obtained, however, if renormalized rather than free-nucleon operators are used in the shell-model calculations. In the mirror decay of 14C a similar situation occurs. Consistency between the 14C lifetime, the slope of the shape-correction function and the M1 matrix element from gamma decay can only be achieved with renormalized operators in the shell-model calculation.Comment: 9 pages; revtex4; one figur

    A population-based case-control study on social factors and risk of testicular germ cell tumours

    Get PDF
    Objectives Incidence rates for testicular cancer have risen over the last few decades. Findings of an association between the risk of testicular cancer and social factors are controversial. The association of testicular cancer and different indicators of social factors were examined in this study.<p></p> Design Case–control study.<p></p> Setting Population-based multicentre study in four German regions (city states Bremen and Hamburg, the Saarland region and the city of Essen).<p></p> Participants The study included 797 control participants and 266 participants newly diagnosed with testicular cancer of which 167 cases were classified as seminoma and 99 as non-seminoma. The age of study participants ranged from 15 to 69 years.<p></p> Methods Social position was classified by educational attainment level, posteducational training, occupational sectors according to Erikson-Goldthorpe-Portocarrero (EGP) and the socioeconomic status (SES) on the basis of the International SocioEconomic Index of occupational status (ISEI). ORs and corresponding 95% CIs (95% CIs) were calculated for the whole study sample and for seminoma and non-seminoma separately.<p></p> Results Testicular cancer risk was modestly increased among participants with an apprenticeship (OR=1.7 (95% CI 1.0 to 2.8)) or a university degree (OR=1.6 (95% CI 0.9 to 2.8)) relative to those whose education was limited to school. Analysis of occupational sectors revealed an excess risk for farmers and farm-related occupations. No clear trend was observed for the analyses according to the ISEI-scale.<p></p> Conclusions Social factors based on occupational measures were not a risk factor for testicular cancer in this study. The elevated risk in farmers and farm-related occupations warrants further research including analysis of occupational exposures.<p></p&gt

    Targeted adjustment of residual stresses in hot-formed components by means of process design based on finite element simulation

    Get PDF
    The aim of this work is to generate an advantageous compressive residual stress distribution in the surface area of hot-formed components by intelligent process control with tailored cooling. Adapted cooling is achieved by partial or temporal instationary exposure of the specimens to a water–air spray. In this way, macroscopic effects such as local plastification caused by inhomogeneous strains due to thermal and transformation-induced loads can be controlled in order to finally customise the surface-near residual stress distribution. Applications for hot-formed components often require special microstructural properties, which guarantee a certain hardness or ductility. For this reason, the scientific challenge of this work is to generate different residual stress distributions on components surfaces, while the geometric as well as microstructural properties of AISI 52100 alloy stay the same. The changes in the residual stresses should therefore not result from the mentioned changed component properties, but solely from the targeted process control. Within the scope of preliminary experimental studies, tensile residual stresses in a martensitic microstructure were determined on reference components, which had undergone a simple cooling in water (from the forming heat), or low compressive stresses in pearlitic microstructures were determined after simple cooling in atmospheric air. Numerical studies are used to design two tailored cooling strategies capable of generating compressive stresses in the same components. The developed processes with tailored cooling are experimentally realised, and their properties are compared to those of components manufactured involving simple cooling. Based on the numerical and experimental analyses, this work demonstrates that it is possible to influence and even invert the sign of the residual stresses within a component by controlling the macroscopic effects mentioned above

    Oxidation state of iron in hydrous phono-tephritic melts

    Get PDF
    The oxidation state of iron in hydrous ultrapotassic (phono-tephritic) melts coexisting with mixed H2O-CO2 fluids was experimentally studied at 1200 and 1250{degree sign}C and pressures from 50 to 500 MPa. The oxygen fugacity (fO2) varied from NNO-2.9 to NNO+2.6 in logfO2, relative to the Ni-NiO oxygen buffer (NNO), as imposed by external redox conditions in experimental vessels and internal variations in water activity from 0.05 to 1 inside the capsules. The iron redox state of the quenched melts was determined by colorimetric wet-chemical analysis. This analytical method was optimized to measure the Fe2+/ΣFe ratio of mg-sized samples within ±0.03 (2σ). The accuracy and precision was tested with international reference materials and with standards analyzed by other methods. The Fe2+/ΣFe ratio of the experimental glasses covered a range of 0.41 to 0.85. A small negative effect of dissolved water on Fe2+/ΣFe at given fO2 was found, consistent with the thermodynamic model of Moretti (2005). No effect of pressure and temperature on the redox state of iron was resolvable in the investigated P-T range. Compared to hydrous ferrobasaltic melts that were studied previously under similar conditions, systematically lower Fe2+/ΣFe ratios were found for the phono-tephritic melts, in particular at low oxygen fugacities. This effect is attributed to the much higher K2O contents of the phono-tephrite (7.5 compared to 0.3 wt%), but the difference in ΣFeO (7.8 wt% in the phono-tephrite and 12.9 wt% in the ferrobasalt) may have an influence as well. Comparison of the experimentally obtained relationship between logfO2 and Fe3+/Fe2+ for the studied hydrous ultrapotassic melts with commonly used empirical and thermodynamic models suggest that these models can be successfully applied to phono-tephritc melts, although such compositions were not implemented in the model calibrations. Furthermore, the new data can be used to improve the models with respect to the effects of compositional variables, such as H2O or K2O, on the redox state of iron in silicate melts

    Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior

    Get PDF
    The KamLAND and Borexino experiments have detected electron antineutrinos produced in the decay chains of natural thorium and uranium (Th and U geoneutrinos). We analyze the energy spectra of current geoneutrino data in combination with solar and long-baseline reactor neutrino data, with marginalized three-neutrino oscillation parameters. We consider the case with unconstrained Th and U event rates in KamLAND and Borexino, as well as cases with fewer degrees of freedom, as obtained by successively assuming for both experiments a common Th/U ratio, a common scaling of Th+U event rates, and a chondritic Th/U value. In combination, KamLAND and Borexino can reject the null hypothesis (no geoneutrino signal) at 5 sigma. Interesting bounds or indications emerge on the Th+U geoneutrino rates and on the Th/U ratio, in broad agreement with typical Earth model expectations. Conversely, the results disfavor the hypothesis of a georeactor in the Earth's core, if its power exceeds a few TW. The interplay of KamLAND and Borexino geoneutrino data is highlighted.Comment: 12 pages, including 6 figure

    Two-Body B Meson Decays to η and η': Observation of B → η'K

    Get PDF
    In a sample of 6.6×10^6 produced B mesons we have observed decays B→η′K, with branching fractions B(B^+→η′K^+) = (6.5_(-1.4)^(+1.5)±0.9)×10^(-5) and B(B^0→η′K^0) = (4.7_(-2.0)^(+2.7)±0.9)×10^(-5). We have searched with comparable sensitivity for 17 related decays to final states containing an η or η′ meson accompanied by a single particle or low-lying resonance. Our upper limits for these constrain theoretical interpretations of the B→η′K signal

    Characterization of red wines aged with oak chip in the São Francisco Valley, Brazil.

    Get PDF
    This research aimed to characterize the physicochemical composition of Syrah tropical wines aged with oak chip addition

    Neutrino and antineutrino charge-exchange reactions on 12C

    Get PDF
    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, both for neutrino-nucleus reactions and muon capture. Explicit violation of CVC hypothesis by the Coulomb field, as well as development of a sum rule approach for the inclusive cross sections have been worked out. We have done a thorough study of exclusive (ground state) properties of 12^{12}B and 12^{12}N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put in evidence the limitations of standard RPA and the QRPA models, which come from the inability of the RPA in opening the p3/2p_{3/2} shell, and from the non-conservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν~\nu/\tilde{\nu}) reactions 12^{12}C(ν,e)12\nu,e^-)^{12}N and 12^{12}C(ν~,e+)12\tilde{\nu},e^+)^{12}B are calculated within both the PQRPA, and the relativistic QRPA (RQRPA). It is found that the magnitudes of the resulting cross-sections: i) are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies both for ν\nu and ν~\tilde{\nu}, ii) they steadily increase when the size of the configuration space is augmented, and particulary for ν/ν~\nu/\tilde{\nu} energies >200> 200 MeV, and iii) converge for sufficiently large configuration space and final state spin. The quasi-elastic 12^{12}C(ν,μ)12\nu,\mu^-)^{12}N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross-section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the ν/ν~\nu/\tilde{\nu}-12^{12}C charge-exchange reactions related with astrophysical applications.Comment: 21 pages, 13 figures, 1 table, submitted to Physical Review

    Oxidation state of iron in hydrous phono-tephritic melts

    Get PDF
    The oxidation state of iron in hydrous ultrapotassic (phono-tephritic) melts coexisting with mixed H2O-CO2 fluids was experimentally studied at 1200 and 1250{degree sign}C and pressures from 50 to 500 MPa. The oxygen fugacity (fO2) varied from NNO-2.9 to NNO+2.6 in logfO2, relative to the Ni-NiO oxygen buffer (NNO), as imposed by external redox conditions in experimental vessels and internal variations in water activity from 0.05 to 1 inside the capsules. The iron redox state of the quenched melts was determined by colorimetric wet-chemical analysis. This analytical method was optimized to measure the Fe2+/ΣFe ratio of mg-sized samples within ±0.03 (2σ). The accuracy and precision was tested with international reference materials and with standards analyzed by other methods. The Fe2+/ΣFe ratio of the experimental glasses covered a range of 0.41 to 0.85. A small negative effect of dissolved water on Fe2+/ΣFe at given fO2 was found, consistent with the thermodynamic model of Moretti (2005). No effect of pressure and temperature on the redox state of iron was resolvable in the investigated P-T range. Compared to hydrous ferrobasaltic melts that were studied previously under similar conditions, systematically lower Fe2+/ΣFe ratios were found for the phono-tephritic melts, in particular at low oxygen fugacities. This effect is attributed to the much higher K2O contents of the phono-tephrite (7.5 compared to 0.3 wt%), but the difference in ΣFeO (7.8 wt% in the phono-tephrite and 12.9 wt% in the ferrobasalt) may have an influence as well. Comparison of the experimentally obtained relationship between logfO2 and Fe3+/Fe2+ for the studied hydrous ultrapotassic melts with commonly used empirical and thermodynamic models suggest that these models can be successfully applied to phono-tephritc melts, although such compositions were not implemented in the model calibrations. Furthermore, the new data can be used to improve the models with respect to the effects of compositional variables, such as H2O or K2O, on the redox state of iron in silicate melts

    Arthropods as vectors of esca-related pathogens: Transmission efficiency of ants and earwigs and the potential of earwig feces as inoculum source in vineyards

    Get PDF
    The spread of Grapevine trunk diseases (GTDs) such as esca concerns wine growers worldwide. Besides rain-splash and air currents, arthropods may play an additional role in the dissemination of esca-related pathogens such as Phaeomoniella chlamydospora (Pch) and Phaeoacremonium minimum (Pmm). The present study confirms that black garden ants (Lasius niger L., Formicidae: Formicinae) and European earwigs (Forficula auricularia L., Dermaptera: Forficulidae) can, under artificial conditions, efficiently transmit spores of Pch and Pmm to healthy grapevine cuttings, causing new infections. The potential of earwig feces as inoculum source in vineyards is additionally discussed. Spores of Pch and Pmm retained germination ability after earwig gut passage, and infectious feces successfully infected wounded grapevine cuttings under artificial conditions. However, molecular detection frequencies of esca-related pathogens in earwig feces collected from the field were very low. With this, the risk of earwig feces as inoculum source for esca-related pathogens is probably only marginal. However, arthropods carrying esca-related spores on their exoskeletons, such as ants and earwigs, might contribute to the overall spread of esca in vineyards. The invasion of GTDs during the phase of pruning wound susceptibility, either by arthropod vectors or by airborne spores, can efficiently be prevented by adequate pruning wound protection
    corecore