9 research outputs found

    Convergence of the Eberlein diagonalization method under the generalized serial pivot strategies

    Full text link
    The Eberlein method is a Jacobi-type process for solving the eigenvalue problem of an arbitrary matrix. In each iteration two transformations are applied on the underlying matrix, a plane rotation and a non-unitary elementary transformation. The paper studies the method under the broad class of generalized serial pivot strategies. We prove the global convergence of the Eberlein method under the generalized serial pivot strategies with permutations and present several numerical examples.Comment: 16 pages, 3 figure

    Age Differences in Central (Semantic) and Peripheral Processing: The importance of Considering Both Response Times and Errors

    Get PDF
    In this project we examined the effect of adult age on visual word recognition by using combined reaction time (RT) and accuracy methods based on the Hick–Hyman law. This was necessary because separate Brinley analyses of RT and errors resulted in contradicting results. We report the results of a lexical decision task experiment (with 96 younger adults and 97 older adults). We transformed the error data into entropy and then predicted RT by using entropy values separately for exposure duration (thought to influence peripheral processes) and word frequency (thought to influence central processes). For exposure duration, the entropy–RT functions indicate that older adults show higher intercepts and slopes than do younger adults, suggesting an encoding decrement for older adults. However, for word frequency, older adults show higher intercepts but not steeper slopes than younger adults. Older adults thus show a peripheral processing decrement but not a central processing decrement for lexical decision

    Age Differences in Central (Semantic) and Peripheral Processing: The importance of Considering Both Response Times and Errors

    Get PDF
    In this project we examined the effect of adult age on visual word recognition by using combined reaction time (RT) and accuracy methods based on the Hick–Hyman law. This was necessary because separate Brinley analyses of RT and errors resulted in contradicting results. We report the results of a lexical decision task experiment (with 96 younger adults and 97 older adults). We transformed the error data into entropy and then predicted RT by using entropy values separately for exposure duration (thought to influence peripheral processes) and word frequency (thought to influence central processes). For exposure duration, the entropy–RT functions indicate that older adults show higher intercepts and slopes than do younger adults, suggesting an encoding decrement for older adults. However, for word frequency, older adults show higher intercepts but not steeper slopes than younger adults. Older adults thus show a peripheral processing decrement but not a central processing decrement for lexical decision

    Human vaginal Lactobacillus rhamnosus harbor mutation in 23S rRNA associated with erythromycin resistance

    Get PDF
    Little is known about the diversity and distribution of resistance determinants in human commensal bacteria. The aim of this study was to determine the molecular mechanism responsible for high-level erythromycin resistance among five human vaginal Lactobacillus rhamnosus isolates. PCR screening for the presence of ermA, ermB and ermC methylase genes revealed no determinants responsible for detected erythromycin resistance. Therefore, sequences of 23S rRNA genes from L. rhamnosus strains were studied by PCR-RFLP analysis and sequencing of 23S rRNA genes. According to the results, in all erythromycin-resistant L. rhamnosus strains, the presence of a A - gt G transition mutation at position 2058 was discovered. Additionally, the isolates exhibited heterozygosity for the A2058/G2058 mutation among 23S rRNA gene copies. Presumably, the greatest number of mutated 23S rRNA operons was observed for the L. rhamnosus BGHV1' strain that also had the highest MIC for erythromycin (MIC = 2048 mu g mL(-1)). This study reports the presence of transition mutations in the V region of 23S rRNA genes that most probably account for high-level erythromycin resistance observed for the first time in human vaginal lactobacilli.Peer-reviewed manuscript: [https://imagine.imgge.bg.ac.rs/handle/123456789/1618

    Human vaginal Lactobacillus rhamnosus harbor mutation in 23S rRNA associated with erythromycin resistance

    No full text
    Little is known about the diversity and distribution of resistance determinants in human commensal bacteria. The aim of this study was to determine the molecular mechanism responsible for high-level erythromycin resistance among five human vaginal Lactobacillus rhamnosus isolates. PCR screening for the presence of ermA, ermB and ermC methylase genes revealed no determinants responsible for detected erythromycin resistance. Therefore, sequences of 23S rRNA genes from L. rhamnosus strains were studied by PCR-RFLP analysis and sequencing of 23S rRNA genes. According to the results, in all erythromycin-resistant L. rhamnosus strains, the presence of a A → G transition mutation at position 2058 was discovered. Additionally, the isolates exhibited heterozygosity for the A2058/G2058 mutation among 23S rRNA gene copies. Presumably, the greatest number of mutated 23S rRNA operons was observed for the L. rhamnosus BGHV1' strain that also had the highest MIC for erythromycin (MIC = 2048 μg mL-1). This study reports the presence of transition mutations in the V region of 23S rRNA genes that most probably account for high-level erythromycin resistance observed for the first time in human vaginal lactobacilli. © 2009 Elsevier Masson SAS. All rights reserved.This work was supported by the Ministry of Science and Technological Development, Republic of Serbia, Grant No 143036 and by a EU project within the VI Frame Program (ACE-ART, ref. CT-2003-506214). G.H. is a postdoctoral fellow of the Fund for Scientific Research, Flanders (Belgium) (F.W.O.-Vlaanderen).Peer Reviewe

    The Trichoplax genome and the nature of placozoans

    No full text
    Placozoans are arguably the simplest free-living animals, possibly evoking an early stage in metazoan evolution, yet their biology is poorly understood. Here we report the sequencing and analysis of the {approx}98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome exhibits conserved gene content, gene structure, and synteny relative to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signaling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages

    Fast Track Algorithm: How To Differentiate A “Scleroderma Pattern” From A “Non-Scleroderma Pattern”

    Get PDF
    Objectives: This study was designed to propose a simple “Fast Track algorithm” for capillaroscopists of any level of experience to differentiate “scleroderma patterns” from “non-scleroderma patterns” on capillaroscopy and to assess its inter-rater reliability. Methods: Based on existing definitions to categorise capillaroscopic images as “scleroderma patterns” and taking into account the real life variability of capillaroscopic images described standardly according to the European League Against Rheumatism (EULAR) Study Group on Microcirculation in Rheumatic Diseases, a fast track decision tree, the “Fast Track algorithm” was created by the principal expert (VS) to facilitate swift categorisation of an image as “non-scleroderma pattern (category 1)” or “scleroderma pattern (category 2)”. Mean inter-rater reliability between all raters (experts/attendees) of the 8th EULAR course on capillaroscopy in Rheumatic Diseases (Genoa, 2018) and, as external validation, of the 8th European Scleroderma Trials and Research group (EUSTAR) course on systemic sclerosis (SSc) (Nijmegen, 2019) versus the principal expert, as well as reliability between the rater pairs themselves was assessed by mean Cohen's and Light's kappa coefficients. Results: Mean Cohen's kappa was 1/0.96 (95% CI 0.95-0.98) for the 6 experts/135 attendees of the 8th EULAR capillaroscopy course and 1/0.94 (95% CI 0.92-0.96) for the 3 experts/85 attendees of the 8th EUSTAR SSc course. Light's kappa was 1/0.92 at the 8th EULAR capillaroscopy course, and 1/0.87 at the 8th EUSTAR SSc course. C Conclusion: For the first time, a clinical expert based fast track decision algorithm has been developed to differentiate a “non-scleroderma” from a “scleroderma pattern” on capillaroscopic images, demonstrating excellent reliability when applied by capillaroscopists with varying levels of expertise versus the principal expert and corroborated with external validation.Wo
    corecore