53 research outputs found

    A modular approach to the antifungal sphingofungin family: concise total synthesis of sphingofungin A and C

    Get PDF
    Sphingofungins are fungal natural products known to inhibit the biosynthesis of sphingolipids which play pivotal roles in various cell functions. Here, we report a short and flexible synthetic approach towards the sphingofungin family. Key step of the synthesis was a decarboxylative cross-coupling reaction of chiral sulfinyl imines with a functionalized tartaric acid derivative, which yielded the core motive of sphingofungins carrying four consecutive stereocenters and a terminal double bond. Subsequent metathesis reaction allowed for the introduction of different side chains of choice resulting in a total of eight sphingofungins, including for the first time sphingofungin C (eight steps from commercially available protected tartaric acid with an overall yield of 6%) and sphingofungin A (ten steps). All newly synthesized derivatives were tested for their antifungal, cell proliferative and antiparasitic activity unraveling their structure-activity relations

    Nocardia macrotermitis sp. nov. and Nocardia aurantia sp. nov., isolated from the gut of the fungus-growing termite Macrotermes natalensis

    Get PDF
    The taxonomic positions of two novel aerobic, Gram-stain-positive Actinobacteria, designated RB20T^{T} and RB56T^{T}, were determined using a polyphasic approach. Both were isolated from the fungus-farming termite Macrotermes natalensis. Results of 16S rRNA gene sequence analysis revealed that both strains are members of the genus Nocardia with the closest phylogenetic neighbours Nocardia miyunensis JCM12860T^{T} (98.9 %) and Nocardia nova DSM44481T^{T} (98.5 %) for RB20T^{T} and Nocardia takedensis DSM 44801T^{T} (98.3 %), Nocardia pseudobrasiliensis DSM 44290T^{T} (98.3 %) and Nocardia rayongensis JCM 19832T^{T} (98.2 %) for RB56T^{T}. Digital DNA–DNA hybridization (DDH) between RB20T^{T} and N. miyunensis JCM12860T^{T} and N. nova DSM 44481T^{T} resulted in similarity values of 33.9 and 22.0 %, respectively. DDH between RB56T^{T} and N. takedensis DSM44801T^{T} and N. pseudobrasiliensis DSM44290T^{T} showed similarity values of 20.7 and 22.3 %, respectively. In addition, wet-lab DDH between RB56T^{T} and N. rayongensis JCM19832T^{T} resulted in 10.2 % (14.5 %) similarity. Both strains showed morphological and chemotaxonomic features typical for the genus Nocardia , such as the presence of meso-diaminopimelic acid (A2_{2}pm) within the cell wall, arabinose and galactose as major sugar components within whole cell-wall hydrolysates, the presence of mycolic acids and major phospholipids (diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol), and the predominant menaquinone MK-8 (H4, ω-cyclo). The main fatty acids for both strains were hexadecanoic acid (C16 : 0_{16 : 0}), 10-methyloctadecanoic acid (10-methyl C18 : 0_{18 : 0}) and cis-9-octadecenoic acid (C18 : 1_{18 : 1} ω9c). We propose two novel species within the genus Nocardia : Nocardia macrotermitis sp. nov. with the type strain RB20T^{T} (=VKM Ac-2841T^{T}=NRRL B65541T^{T}) and Nocardia aurantia sp. nov. with the type strain RB56T^{T} (=VKM Ac-2842T^{T}=NRRL B65542T^{T})

    Comparative genomic and metabolomic analysis of Termitomyces species provides insights into the terpenome of the fungal cultivar and the characteristic odor of the fungus garden of Macrotermes natalensis termites

    Get PDF
    Macrotermitinae termites have domesticated fungi of the genus Termitomyces as food for their colony, analogously to human farmers growing crops. Termites propagate the fungus by continuously blending foraged and predigested plant material with fungal mycelium and spores (fungus comb) within designated subterranean chambers. To test the hypothesis that the obligate fungal symbiont emits specific volatiles (odor) to orchestrate its life cycle and symbiotic relations, we determined the typical volatile emission of fungus comb biomass and Termitomyces nodules, revealing α-pinene, camphene, and d-limonene as the most abundant terpenes. Genome mining of Termitomyces followed by gene expression studies and phylogenetic analysis of putative enzymes related to secondary metabolite production encoded by the genomes uncovered a conserved and specific biosynthetic repertoire across strains. Finally, we proved by heterologous expression and in vitro enzymatic assays that a highly expressed gene sequence encodes a rare bifunctional mono-/sesquiterpene cyclase able to produce the abundant comb volatiles camphene and d-limonene. IMPORTANCE The symbiosis between macrotermitinae termites and Termitomyces is obligate for both partners and is one of the most important contributors to biomass conversion in the Old World tropic’s ecosystems. To date, research efforts have dominantly focused on acquiring a better understanding of the degradative capabilities of Termitomyces to sustain the obligate nutritional symbiosis, but our knowledge of the small-molecule repertoire of the fungal cultivar mediating interspecies and interkingdom interactions has remained fragmented. Our omics-driven chemical, genomic, and phylogenetic study provides new insights into the volatilome and biosynthetic capabilities of the evolutionarily conserved fungal genus Termitomyces, which allows matching metabolites to genes and enzymes and, thus, opens a new source of unique and rare enzymatic transformations

    Grandparental immune priming in the pipefish Syngnathus typhle

    Get PDF
    Background: Phenotypic changes in response to environmental influences can persist from one generation into the next. In many systems parental parasite experience influences offspring immune responses, known as transgenerational immune priming (TGIP). TGIP in vertebrates is mainly maternal and short-term, supporting the adaptive immune system of the offspring during its maturation. However, if fathers and offspring have a close physical connection, evolution of additional paternal immune priming can be adaptive. Biparental TGIP may result in maximized immunological protection. Here, we investigate multigenerational biparental TGIP in the sex-role reversed pipefish Syngnathus typhle by exposing grandparents to an immune challenge with heat-killed bacteria and assessing gene expression (44 target genes) of the F2-generation. Results: Grandparental immune challenge induced gene expression of immune genes in one-week-old grandoffspring. Similarly, genes mediating epigenetic regulation including DNA-methylation and histone modifications were involved in grandparental immune priming. While grand-maternal impact was strong on genes of the complement component system, grand-paternal exposure changed expression patterns of genes mediating innate immune defense. Conclusion: In a system with male pregnancy, grandparents influenced the immune system of their grandoffspring in a sex-specific manner, demonstrating multigenerational biparental TGIP. The involvement of epigenetic effects suggests that TGIP via the paternal line may not be limited to the pipefish system that displays male pregnancy. While the benefits and costs of grandparental TGIP depend on the temporal heterogeneity of environmental conditions, multigenerational TGIP may affect host-parasite coevolution by dampening the amplitude of Red Queen Dynamics

    Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species

    Get PDF
    Background Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. Results Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis’ strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. Conclusions Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds
    • 

    corecore