1,162 research outputs found

    Resolving the molecular gas around the lensed quasar RXJ0911.4+0551

    Full text link
    We report on high angular resolution observations of the CO(7-6) line and millimeter continuum in the host galaxy of the gravitationally lensed (z~2.8) quasar RXJ0911.4+0551 using the Plateau de Bure Interferometer. Our CO observations resolve the molecular disk of the source. Using a lens model based on HST observations we fit source models to the observed visibilities. We estimate a molecular disk radius of 1±\pm0.2 kpc and an inclination of 69±\pm6\deg, the continuum is more compact and is only marginally resolved by our observations. The relatively low molecular gas mass, Mgas=(2.3±0.5)×109Mgas=(2.3\pm 0.5)\times 10^{9} Msolar, and far infrared luminosity, LFIR=(7.2±1.5)×1011LFIR=(7.2\pm 1.5) \times 10^{11} Lsolar, of this quasar could be explained by its relatively low dynamical mass, Mdyn=(3.9±0.9)×109Mdyn=(3.9\pm 0.9)\times 10^9 Msolar. It would be a scaled-down version the QSOs usually found at high-z. The FIR and CO luminosities lie on the correlation found for QSOs from low to high redshifts and the gas-to-dust ratio (45±1745\pm 17) is similar to the one measured in the z=6.4 QSO, SDSS J1148+5251. Differential magnification affects the continuum-to-line luminosity ratio, the line profile and possibly the spectral energy distribution.Comment: Accepted for publication in A&A, revised after language editin

    Computer Vision for the Humanities: An Introduction to Deep Learning for Image Classification (Part 1)

    Get PDF
    This is the first of a two-part lesson introducing deep learning based computer vision methods for humanities research. Using a dataset of historical newspaper advertisements and the fastai Python library, the lesson walks through the pipeline of training a computer vision model to perform image classification

    Constraining the Thermal Dust Content of Lyman-Break Galaxies in an Overdense Field at z~5

    Full text link
    We have carried out 870 micron observations in the J1040.7-1155 field, known to host an overdensity of Lyman break galaxies at z=5.16 +/- 0.05. We do not detect any individual source at the S(870)=3.0 mJy/beam (2 sigma) level. A stack of nine spectroscopically confirmed z>5 galaxies also yields a non-detection, constraining the submillimeter flux from a typical galaxy at this redshift to S(870)<0.85 mJy, which corresponds to a mass limit M(dust)<1.2x10^8 M_sun (2 sigma). This constrains the mass of thermal dust in distant Lyman break galaxies to less than one tenth of their typical stellar mass. We see no evidence for strong submillimeter galaxies associated with the ultraviolet-selected galaxy overdensity, but cannot rule out the presence of fainter, less massive sources.Comment: 5 pages, 2 figures. MNRAS in pres

    Assessing the impact of OCR quality on downstream NLP tasks

    Get PDF
    A growing volume of heritage data is being digitized and made available as text via optical character recognition (OCR). Scholars and libraries are increasingly using OCR-generated text for retrieval and analysis. However, the process of creating text through OCR introduces varying degrees of error to the text. The impact of these errors on natural language processing (NLP) tasks has only been partially studied. We perform a series of extrinsic assessment tasks — sentence segmentation, named entity recognition, dependency parsing, information retrieval, topic modelling and neural language model fine-tuning — using popular, out-of-the-box tools in order to quantify the impact of OCR quality on these tasks. We find a consistent impact resulting from OCR errors on our downstream tasks with some tasks more irredeemably harmed by OCR errors. Based on these results, we offer some preliminary guidelines for working with text produced through OCR

    Structure formation in a colliding flow: The Herschel view of the Draco nebula

    Full text link
    The Draco nebula is a high Galactic latitude interstellar cloud likely to have been formed by the collision of a Galactic halo cloud entering the disk of the Milky Way. Such conditions are ideal to study the formation of cold and dense gas in colliding flows of warm gas. We present Herschel-SPIRE observations that reveal the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity and the turbulence dissipation scale (0.1 pc) that is compatible with that expected if ambipolar diffusion is the main mechanism of energy dissipation in the WNM. The small-scale structures of the nebula are typical of that seen in some molecular clouds. The gas density has a log-normal distribution with an average value of 10310^3 cm3^{-3}. The size of the structures is 0.1-0.2 pc but this estimate is limited by the resolution of the observations. The mass ranges from 0.2 to 20 M_{\odot} and the distribution of the more massive clumps follows a power law dN/dlog(M)M1.4dN/d\log(M) \sim M^{-1.4}. We identify a mass-size relation with the same exponent as that found in GMCs (ML2.3M\sim L^{2.3}) but only 15% of the mass of the cloud is in gravitationally bound structures. We conclude that the increase of pressure in the collision is strong enough to trigger the WNM-CNM transition caused by the interplay between turbulence and thermal instability as self-gravity is not dominating the dynamics.Comment: 16 pages, A&A, in pres

    Studying the first galaxies with ALMA

    Full text link
    We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z6z \sim 6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (LFIR1013L_{FIR} \sim 10^{13} L_\odot). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (ie. Ly-α\alpha emitters) at z6z \sim 6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust -- the fundamental fuel for star formation -- in galaxies into cosmic reionization.Comment: to appear in Science with ALMA: a new era for Astrophysics}, ed. R. Bachiller (Springer: Berlin); 5 pages, 7 figure

    Far-Infrared Properties of Spitzer-selected Luminous Starbursts

    Get PDF
    We present SHARC-2 350 micron data on 20 luminous z ~ 2 starbursts with S(1.2mm) > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S(350um) > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass--temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6um--2mm measurements of local starbursts. We find characteristic single-component temperatures T1 ~ 35.5+-2.2 K and integrated infrared (IR) luminosities around 10^(12.9+-0.1) Lsun for the SWIRE-selected sources. Molecular gas masses are estimated at 4 x 10^(10) Msun, assuming kappa(850um)=0.15 m^2/kg and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply >~2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 um flux densities, provides an effective means for the study of SMGs at z ~ 1.5--2.5.Comment: 13 pages, 4 figures, edited to match published version in ApJ 717, 29-39 (2010
    corecore