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Suggested Experiments

Part One Conclusion

Appendix: A Non-Scientific Experiment Assessing Transfer Learning

Endnotes

Introduction
While most historians would agree that (modern) representation is shaped by
multimodal media —i.e., media, such as the newspaper, television or internet, that
combine several modes— the fields of digital humanities and digital history remain
dominated by textual media and the wide variety of methods available for its
analysis . Modern historians have frequently been accused of neglecting non-textual
forms of representation, and digital humanists in particular have dedicated
themselves to exploring textual sources. Many have used Optical Character
Recognition (OCR); a technology which renders digitised text machine-readable,
alongside techniques stemming from the field of Natural Language Processing (NLP),
to analyse the contents and context of language within large documents. The
combination of these two has shaped the central methodological innovation of the
field of digital history: the ability to ‘distant read’ large corpora and discover large-
scale patterns.

Over the last ten years, the field of computer vision, which seeks to gain a high-level
understanding of images using computational techniques, has seen rapid innovation.
For example, computer vision models can locate and identify people, animals and
thousands of objects included in images with high accuracy. This technological
advancement promises to do the same for image recognition that the combination of
OCR/NLP techniques has done for texts. Put simply, computer vision opens up a part
of the digital archive for large-scale analysis that has remained mostly unexplored:
the millions of images in digitised books, newspapers, periodicals, and historical
documents. Consequently, historians will now be able to explore the ‘visual side of
the digital turn in historical research’.

This two-part lesson provides examples of how computer vision techniques can be
applied to analyse large historical visual corpora in new ways and how to train
custom computer vision models. As well as identifying the contents of images and
classifying them according to category —two tasks which focus on visual features—
computer vision techniques can also be used to chart the stylistic (dis)similarities
between images.

It should be noted, however, that computer vision techniques present historians with

1
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a set of theoretical and methodological challenges. First, any application of computer
vision techniques to historical corpora should start from a carefully formulated
historical question and, as a result, include a discussion of scale. In short: why is it
important that we answer the question and why are computer vision techniques
necessary to answer it?

Second, following discussions in the field of machine learning fairness , , which seek
to address the question of bias in machine learning (ML), historians should be
conscious of the fact that computer vision techniques shed light on certain parts of
visual corpora, but might overlook, misidentify, misclassify, or even obscure, other
parts. As historians, we have long been aware that we look at the past from our own
time, and therefore any application of computer vision techniques should include a
discussion of possible ‘historical bias’. Because (most) computer vision models are
trained on contemporary data, we run the risk of projecting the time-specific biases
of this data onto the historical record. Whilst it is beyond the scope of this two-part
lesson to explore the question of bias fully, it is something that should be kept in
mind.

Lesson Aims
This two-part lesson aims to:

Provide an introduction to deep learning-based computer vision methods for
humanities research. Deep learning is a branch of machine learning (something
we’ll discuss in more detail in the lessons)

Give an overview of the steps involved in training a deep learning model

Discuss some of the specific considerations around using deep
learning/computer vision for humanities research

Help you decide whether deep learning might be a useful tool for you

This two-part lesson does not aim to:

Reproduce other more generic introductions to deep learning, though it does
cover some of the same material

Cover every detail of deep learning and computer vision; computer vision and
deep learning are vast topics, and it isn’t possible to cover everything here

Suggested Prior Skills
Familiarity with Python or another programming language will be important for

4 5
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following these lessons. Specifically, it would be beneficial to understand how to
use variables, indexing, and have some familiarity with using methods from
external libraries.

We assume familiarity with Jupyter Notebooks i.e., knowing how to run code
included in the notebook. If you are unfamiliar with notebooks, you may find
the Introduction to Jupyter Notebooks Programming Historian lesson a helpful
resource in conjunction with these lessons.

There is some use of external Python libraries in this tutorial, but previous
knowledge isn’t necessary because the steps involved in using these libraries
will be explained as they are used.

Lesson Setup
We suggest approaching this two-part lesson in two stages:

First, read through the materials on this page, to gain familiarity with the key
conceptual issues and the overall workflow for training a computer vision model

Second, run the code in the accompanying Jupyter Notebook version of each
lesson on Kaggle (see below)

In this two-part lesson we will be using a deep learning based approach to computer
vision. The process of setting up an environment for doing deep learning has become
easier but can still be complex. We have tried to keep this setup process as simple
as possible, and recommend a fairly quick route to start running the lesson’s code.

Notebooks
This two-part Programming Historian lesson is available as a Jupyter Notebook. We
recommend that you run the code for this through the accompanying notebooks,
which work well for the exploratory nature we will be using.

Running the Notebooks
You can run the lesson notebooks in a variety of different ways. We strongly
encourage you to use the ‘cloud’ setup instructions as opposed to setting things up
locally. This is for a several reasons:

The setup process for using deep learning in a cloud environment can be much
simpler than trying to set things up locally. Many laptops and personal
computers won’t have this type of hardware available and the process of
installing the necessary software drivers can be time consuming.

https://perma.cc/4FVJ-MUZ2
https://programminghistorian.org/en/lessons/jupyter-notebooks
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The code in this lesson will run much more quickly when a specific type of
Graphical Processing Unit (GPU) is available. This will allow for an interactive
approach to working with models and outputs.

GPUs are more energy efficient for some tasks compared to Central Processing
Units (CPUs), including the type of tasks we will work with in these lessons.

Kaggle
Kaggle is a website which hosts datasets, runs data science competitions and
provides learning resources. Kaggle also hosts Jupyter Notebooks, including
notebooks with access to GPUs.

To run the lesson code on Kaggle you will need to:

Create an account on Kaggle (you will need to provide a phone number), or log
in to your existing account.

Go to https://www.kaggle.com/code/davanstrien/progamming-historian-deep-
learning-pt1. The data used in this lesson is provided alongside these
notebooks.

Click on the ‘Edit’ button to create a copy of the notebook.

Set the ‘Accelerator option’ to ‘GPU’; you will find this option under ‘settings’.

The Kaggle notebooks settings menu

https://perma.cc/PW3J-BVHZ
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://perma.cc/2P2P-EL4V
https://perma.cc/2P2P-EL4V
https://perma.cc/9H6M-PDB6
https://www.kaggle.com/
https://www.kaggle.com/code/davanstrien/progamming-historian-deep-learning-pt1
https://www.kaggle.com/code/davanstrien/progamming-historian-deep-learning-pt1
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The interface for Kaggle notebooks should be familiar if you have used Jupyter
notebooks before. To run a cell containing code you click the right-pointing
arrow button or, if the cell is selected, using ‘Shift + Enter’.

Remember to close your session down once you have finished working with the
notebooks. You can do this by accessing the ‘run’ drop down menu at the top of
a Kaggle notebook.

Kaggle has further documentation on using their notebooks as well as guidance on
efficient GPU usage.

Local Setup
If you don’t want to use one of the cloud setup instructions you can follow
instructions for setting up this lesson locally.

A Quick Introduction to Machine Learning
Before moving to the first practical example, it might be useful to briefly review what
is meant by ‘machine learning’. Machine learning aims to allow computers to ‘learn’
from data instead of being explicitly programmed to do something. For example, if
we want to filter out spam emails there are a few different approaches we can take.
One approach could be to read through examples of ‘spam’ and ‘non-spam’ emails to
see if we can identify signals indicating that an email is spam. We might, for
example, come up with keywords which we think will be likely to indicate spam.
Then we could write a program that does something like this for each email
received:

count number spam_words in email:

    if number spam_words >= 10:

        email = spam

In contrast, a machine learning approach would train a machine learning algorithm
on labeled examples of emails which are ‘spam’ or ‘not spam’. This algorithm would,
over repeated exposure to examples, ‘learn’ patterns which indicate the email type.
This is an example of ‘supervised learning’, a process in which an algorithm is
exposed to labeled data, and is what this tutorial will focus on. There are different
approaches to the managing this training process, some of which we will cover in

https://perma.cc/YF2N-C94Q
https://perma.cc/V8CZ-WZQ4
https://perma.cc/7WC9-VAC2
https://perma.cc/V3DM-E8SF
https://perma.cc/F7ZW-52YR
https://perma.cc/NE75-DHCX
https://perma.cc/PFX7-WB6J
https://perma.cc/TFY2-YT7A
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this two-part lesson. Another type of machine learning which doesn’t require labelled
examples is ‘unsupervised learning’.

There are advantages and disadvantages to machine learning. Some advantages in
our email example include not having to manually identify what indicates if an email
is spam or not. This is particularly useful when signals might be subtle or hard to
detect. If the characteristics of spam emails were to change in the future, you
wouldn’t need to rewrite your entire program but could instead re-train your model
with new examples. Some disadvantages include the requirement for labeled
examples which can be time consuming to create. One major limitation of machine
learning algorithms is that it can be difficult to understand how they made a decision
i.e., why an email was labeled spam or not. The implications of this vary depending
on how much ‘power’ the algorithm is given in a system. For example, the potential
negative impact from an algorithm making automated decisions about a loan
application are likely to be much higher than an algorithm making unhelpful
recommendation for a film from a streaming service.

Training an Image Classification Model
Now that we have a general understanding of machine learning, we’ll move to our
first example of using deep learning for computer vision. In this example, we will
build an image classifier that assigns images to one of two categories based on
labeled training data.

The Data: Classifying Images from Historical Newspapers
In this two-part lesson, we will work with a dataset derived from the “Newspaper
Navigator”. This dataset consists of extracted visual content for 16,358,041 digitised
historic newspaper pages drawn from the Library of Congress’ Chronicling America
collection.

A computer vision model assigned these images one of seven categories, including
photographs and advertisements.

The Newspaper Navigator data was created using an object detection deep learning
model. This model was trained on annotations of first world war-era Chronicling
America pages, including annotations made by volunteers as part of the Beyond
Words crowdsourcing project.

If you want to find out more about how this dataset was created you may want to
read the journal article describing this work, or look at the GitHub repository which

6
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contains the code and training data. We won’t be replicating this model. Instead, we
will use the output of this model as the starting point for creating the data we use in
this tutorial. Since the data from Newspaper Navigator is predicted by a machine
learning model it will contain errors; for now, we will accept that the data we are
working with is imperfect. A degree of imperfection and error is often the price we
have to pay if we want to work with collections ‘at scale’ using computational
methods.

Classifying Newspaper Advertisements
For our first application of deep learning, we’ll focus on classifying images predicted
as adverts (remember this data is based on predictions and will contain some
errors). More specifically, we’ll work with a sample of images in adverts covering the
years 1880-5.

Detecting if Advertisements Contain Illustrations
If you look through the advert images, you will see that some of the adverts contain
only text, whilst others have some kind of illustration.

An advert with an illustration :7



Computer Vision for the Humanities: An Introduction to Deep Learning for Image Classification (Part 1) | Programming Historian

https://programminghistorian.org/en/lessons/computer-vision-deep-learning-pt1[16-12-2022 13:00:06]

An example of an illustrated advert

An advert without an illustration :

An example of a text only advert

Our classifier will be trained to predict which category an advert image belongs. We
might use this to help automate finding adverts with images for further ‘manual’
analysis. Alternatively, we may use this classifier more directly to quantify how many
adverts contained illustrations in a given year and discover whether this number
changed over time, along with how it was influenced by other factors such as the
place of publication. The intended use of your model will impact the labels you
choose to train it on and how you choose to assess whether a model is performing
sufficiently well. We’ll dig into these issues further as we move through this two-part
lesson.

An Introduction to the fastai Library
fastai is a Python library for deep learning “which provides practitioners with high-
level components that can quickly and easily provide state-of-the-art results in

8
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standard deep learning domains, and provides researchers with low-level
components that can be mixed and matched to build new approaches” . The library
is developed by fast.ai (notice the dot!), a research organisation that aims to make
deep learning more accessible. Alongside the fastai library, fast.ai also organises free
courses and carries out research.

There are a few reasons why fastai was chosen for this tutorial:

It is focused on making deep learning accessible, particularly through the
design of library’s API.

It facilitates the use of techniques that don’t require a large amount of data or
computational resources.

Many best practices are implemented as ‘defaults’, helping achieve good
results.

There are different levels at which you can interact with the library depending
on how much you need to change lower-level details.

The library sits on top of PyTorch which makes it relatively simple to use
existing code.

Although this tutorial focuses on fastai, many of the techniques shown are applicable
across other frameworks too.

Creating an Image Classifier in fastai
The next section will outline the steps involved in creating and training a
classification model to predict whether an advert is text-only or also contains an
illustration. Briefly, the steps will be:

1. Load the data

2. Create a model

3. Train the model

These steps will be covered fairly quickly; don’t worry if you feel you are not
following everything in this section, the lesson will get back to what is happening in
more detail when we get to the the workflow of a computer vision problem section.

The first thing we’ll do is import the required modules from the fastai library. In this
case, we import vision.all  since we are working on a computer vision task.

from fastai.vision.all import *

9
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We will also import Matplotlib, a library for creating visualisations in Python. We will
ask Matplotlib to use a different style using the style.use  method.

%matplotlib inline

import matplotlib.pyplot as plt

plt.style.use('seaborn')

Loading the Data
There are a number of ways in which data can be loaded using the fastai library. The
advert data consists of a folder which contains the image files, and a CSV file which
contains a column with paths to the images, and the associated label:

file

kyu_joplin_ver01_data_sn84037890_00175045338_1900060601_0108_007_6_97.j

There are various ways in which we could load this type of data using fastai . In
this example we’ll use ImageDataLoaders.from_csv . As the name suggests the
from_csv  method of ImagDataLoaders  loads data from a CSV file. We need to tell

fastai a few things about how to load the data to use this method:

The path to the folder where images and CSV file are stored

The coloumns in the CSV file which contain the labels

One ‘item transform’ Resize()  to resize all the images to a standard size

We’ll create a variable ad_data  which will be used to store the paramaters for how
to load this data:

ad_data = ImageDataLoaders.from_csv(

    path="ads_data/",  # root path to csv file and image directory

    csv_fname="ads_upsampled.csv/",  # the name of our csv file

    folder="images/",  # the folder where our images are stored

    fn_col="file",  # the file column in our csv

https://perma.cc/AX3V-X4EC
https://perma.cc/37DF-7WKS
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    label_col="label",  # the label column in our csv

    item_tfms=Resize(224, ResizeMethod.Squish),  # resize imagesby squishing so 

they are 224x224 pixels

    seed=42,  # set a fixed seed to make results more reproducible

)

It is important to make sure that data has been loaded correctly. One way to check
this quickly is to use show_batch()  method on our data. This will display the images
and the associated labels for a sample of our data. The examples you get back will
be slightly different to those here.

ad_data.show_batch()

The output of ‘show_batch’

This is a useful way of checking that your labels and data have been loaded
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correctly. You can see here that the labels ( text-only  and illustration ) have
been associated correctly with how we want to classify these images.

Creating the Model
Now that fastai knows how to load the data, the next step is to create a model with
it. To create a model suitable for computer vision we will use the cnn_learner
function. This function will create a ‘Convolutional Neural Network’, a type of deep
learning model often used for computer vision applications. To use this function you
need to pass (at a minimum):

The data the model will use as training data

The type of model you want to use

This is already sufficient for creating a computer vision model in fastai, but you may
also want to pass some metrics to track during training. This allows you to get a
better sense of how well your model is performing the task you are training it on. In
this example, we’ll use accuracy  as the metric.

Let’s create this model and assign it to a new variable learn :

learn = cnn_learner(

    ad_data,  # the data the model will be trained on

    resnet18,  # the type of model we want to use

    metrics=accuracy,  # the metrics to track

)

Training the Model
Although we have created a cnn_learner  model, we haven’t actually trained the
model yet. This is done using the fit  method. Training is the process which allows
the computer vision model to ‘learn’ how to predict the correct labels for the data.
There are different ways we can train (fit) this model. To start with, we’ll use the
fine_tune  method. In this example the only thing we’ll pass to the fine tune method

is the number of epochs to train for. Each pass through the entire dataset is an
‘epoch’. The amount of time the model takes to train will depend on where you are
running this code and the resources available. Again, we will cover the details of all
of these components below.

https://perma.cc/UH8L-L6MR
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learn.fine_tune(5)

epoch train_loss valid_loss accuracy time

0 0.971876 0.344096 0.860000 00:06

epoch train_loss valid_loss accuracy time

0 0.429913 0.394812 0.840000 00:05

1 0.271772 0.436350 0.853333 00:05

2 0.170500 0.261906 0.913333 00:05

3 0.125547 0.093313 0.946667 00:05

4 0.107586 0.044885 0.980000 00:05

When you run this method you will see a progress bar showing how long the model
has been training and the estimated time remaining. You will also see a table which
displays some other information about the model, such as our tracked accuracy
metric. You can see that in this example we got an accuracy greater than 90%.
When you run the code yourself, the score you get may be be slightly different.

Results
While deep learning techniques are commonly perceived as needing large amounts
of data and extensive computing power, our example shows that for many
applications smaller datasets suffice. In this example, we could have potentially used
other approaches; the aim here was not to show the best solution with this particular
dataset but to give a sense of what is possible with a limited number of labeled
examples.

An In-Depth Guide to Computer Vision using Deep
Learning

Now that we have an overview of the process we’ll go into more detail about how
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this process works.

The Workflow of a Supervised Computer Vision Problem
This section will start to dig into some of the steps involved in the process of creating
a deep learning based computer vision model. This process involves a range of
steps, only some of which are directly about training models. A high-level illustration
of a supervised machine learning pipeline might look like this:

A high level illustration of a supervised machine learning pipeline

We can see that there are quite a few steps before and after the model training
phase of the workflow. Before we get to training a model, we need data. In this
lesson, image data has already been prepared so you didn’t need to worry about this
step. However, when you move to using computer vision for your own research
questions, it is unlikely that there will an existing dataset for your exact use case. As
a result, you will need to create this data yourself. The process of getting access to
data will vary depending on the type of images you are interested in working with
and where they are held. Some heritage collections are making bulk collections of
images data available, whilst others largely make images available only via a
‘viewer’. The increasing adoption of the IIIF standard is also making the process of
working with images held by different institutions simpler.

Once you have a collection of images to work with, the next step (if using supervised
learning) will be to create some labels for this data and train the model. This process
will be discussed in more detail below. Once a model has been trained you will get
out some predictions. These predictions are ‘scored’ using a range of potential
metrics, some of which we’ll explore further in Part 2 of this lesson.

Once a model has reached a satisfactory score, its outputs may be used for a range
of ‘interpretative” activities. Once we have predictions from a deep learning model
there are different options for what to do with these. Our predictions could directly
inform automated decisions (for example, where images are to be displayed within a
web collection), but it is more likely that those predictions will be read by a human
for further analysis. This will particularly be the case if the intended use is to explore
historical phenomena.

https://perma.cc/27EM-N36U
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Training a Model
Zooming in on the deep learning part of the workflow, what does the training
process look like?

The deep learning training loop

A high-level summary of the training loop for supervised learning: start with some
images and labels, do some preparation to make the input suitable for a deep
learning model, pass the data through the model, make predictions for the labels,
calculate how wrong the predictions are, update the model with the aim of
generating better predictions next time. This process is repeated a number of times.
During this training loop, metrics are reported which let the human training the
model evaluate how well the model is doing.

This is obviously a high-level summary. Let’s look at each step in the training loop
one at a time. Although the next section will show these steps using code, don’t
worry too much if it doesn’t all sink in at first.

Input Data
Starting with the inputs, we have images and labels. Although deep learning takes
some inspiration from how human cognition works, the way a computer ‘sees’ is very
different from a human. All deep learning models take numbers as inputs. Since
images are stored on a computer as a matrix of pixel values, this process is
relatively simple for computer vision models. Alongside these images, we have a
label(s) associated with each image. Again, these are represented as numbers inside
the model.

How Much Data?
It is often believed that you need huge amounts of data to train a useful deep



Computer Vision for the Humanities: An Introduction to Deep Learning for Image Classification (Part 1) | Programming Historian

https://programminghistorian.org/en/lessons/computer-vision-deep-learning-pt1[16-12-2022 13:00:06]

learning model, however, this is not always the case. We assume that if you are
trying to use deep learning to solve a problem, you have enough data to justify not
using a manual approach. The real problem is the amount of labelled data you have.
It is not possible to give a definitive answer to “how much data?”, since the amount
of training data required is dependent on a broad range of factors. There are a
number of things which can be done to reduce the amount of training data required,
some of which we will cover in this lesson.

The best approach will likely be to create some initial training data and see how well
your model does on it. This will give you a sense of whether a problem is possible to
tackle. Furthermore, the process of annotating your data is valuable in itself. For a
simple classification task, it might be possible to begin assessing whether a model is
worth developing with a few hundred labelled examples (though you will often need
more than this to train a robust model).

Preparing Mini Batches
When we use deep learning, it is usually not possible to pass all of our data into the
model in one go. Instead, data is split into batches. When using a GPU, data is
loaded into GPU memory one batch at a time. The size of this batch can impact the
training process but is more often determined by the computational resources you
have available.

The reason we use a GPU for training our model is that it will almost always be
quicker to train a model on a GPU compared to a CPU due to its ability to perform
many calculations in parallel.

Before we can create a batch and load it onto the GPU, we usually need to make
sure the images are all the same size. This allows the GPU to run operations
effectively. Once a batch has been prepared, we may want to do some additional
transformations on our images to reduce the amount of training data required.

Creating a Model
Once we have prepared data so it can be loaded one batch at a time, we pass it to
our model. We already saw one example of a model in our first example resnet18 .
A deep learning model architecture defines how data and labels are passed through a
model. In this two-part lesson, we focus on a specific type of deep learning that uses
‘Convolutional Neural Networks’ (CNN).
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A three layer neural network

This diagram gives a crude overview of the different components of a CNN model. In
this type of model, an image is passed through several layers, before predicting an
output label for the image (‘text only’ in this diagram). The layers of this model are
updated during training so that they “learn” which features of an image predict a
particular label. So for example, the CNN we trained on adverts will update the
parameters known as “weights” for each layer, which then produces a representation
of the image that is useful for predicting whether an advert has an illustration or not.

Tensorflow playground is a useful tool for helping to develop an intuition about how
these layers capture different features of input data, and how these features, in turn,
can be used to classify the input data in different ways.

The power in CNNs and deep learning comes from the ability of these layers to
encode very complicated patterns in data.  However, it can often be a challenge to
update the weights effectively.

Using an Existing Model?
When considering how to create our model we have various options about what to
use. One option is to use an existing model which has already been trained on a
particular task. You might for example use the YOLO model. This model is trained to
predict bounding boxes for a number of different types of objects in an image.
Although this could be a valid starting point, there are a number of limitations to this
approach when working with historical material, or for humanities questions more
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broadly. Firstly, the data these models were trained on might be very different from
the data you are using. This can impact your model’s performance on your data and
result in biases towards images in your data which are similar to the training data.
Another issue is that if you use an existing model without any modification, you are
restricted to identifying the labels the original model was trained on.

Although it is possible to directly define a CNN model yourself by defining the layers
you want your model architecture to include, this is usually not where you would
start. It is often best to start with an existing model architecture. The development
of new model architectures is an active area of research, with models proving to be
well-suited for a range of tasks and data. Often, these models are then implemented
by machine learning frameworks. For example, the Hugging Face Transformers
library implements many of the most popular model architectures.

Often, we want a balance between starting from scratch and leveraging existing
models. In this two-part lesson, we show an approach which uses existing model
architectures but modifies the model slightly to allow it to predict new labels. This
model is then trained on new data so it becomes better suited to the task we want it
to perform. This is a technique known as ‘transfer learning’ which will be explored in
the appendix section of this lesson.

Training
Once a model has been created and data prepared, the training process can begin.
Let’s look at the steps of a training loop:

1. A model is passed data and labels, one batch at a time. Each time an entire
dataset has been passed through a model is known as an ‘epoch’. The number
of epochs used to train a model is one of the variables that you will need to
control.

2. The model makes predictions for these labels based on the given inputs, using a
set of internal weights. In this CNN model, the weights are contained within the
layers of the CNN.

3. The model calculates how wrong the predictions are, by comparing the
predictions to the actual labels. A ‘loss function’ is used to calculate how ‘wrong’
the model was in its predictions.

4. The model changes internal parameters to try to do better next time. The loss
function from the previous step returns a ‘loss value’, often just referred to as
the ‘loss’, which is used by the model to update the weights.

https://perma.cc/D39N-DBK4
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A ‘learning rate’ is used to determine how much a model should update based on the
calculated loss. This is another one of the important variables that can be
manipulated during the training process. In Part 2 of this lesson, we will see one
potential way of trying to identify a suitable learning rate for your model.

Validation Data
When we train a deep learning model, we usually do so to make predictions on new
unseen data which doesn’t contain labels. For example, we might want to use our
advert classifier across all of images for a particular time period to count how many
of each type of advert (illustrated or not) appeared in this corpus. We, therefore,
don’t want a model that only does well at learning how to classify the training data it
is shown. Consequently, we almost always use some form of ‘validation data’. This is
data which is used to check that the weights a model is learning on the training data
also translate to new data. In the training loop, the validation data is only used to
‘test’ the model’s predictions. The model does not directly use to update weights.
This helps ensure we don’t end up ‘overfitting’ our model.

‘Overfitting’ refers to when a model becomes very successful at making predictions
on the training data but these predictions don’t generalise beyond the training data.
In effect, the model is ‘remembering’ the training data rather than learning more
general features to make correct predictions on new data. A validation set prevents
this by allowing you to see how well the model is doing on data it hasn’t learned
from. Sometimes, an additional split is made of the data which is used to make
predictions only at the end of training a model. This is often known as a ‘test’ set. A
test set is used to validate model performance for data science competitions, such as
those hosted on Kaggle, and to validate the performance of models created by
external partners. This helps ensure a model is robust in situations where validation
data has deliberately or accidentally been used to ‘game’ the performance of a
model.

Transfer Learning
In our first advert classifier, we used the fine_tune()  method on our learner  for
training. What was this doing? You will have seen that the progress bar output two
parts. The first epoch was training only the final layers of the model, after this the
lower layers of the model were also trained. This is one way in which we can do
transfer learning in fastai. The importance of transfer learning has already been
discussed in the previous sections. As a reminder, transfer learning uses the
‘weights’ that a model has previously learned on another task on a new task. In the
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case of image classification, this usually means a model has been trained on a much
larger dataset. Often this previous training dataset is ImageNet.

ImageNet is a large database of images which is heavily used in computer vision
research. ImageNet currently contains “14,197,122” images with over 20,000
different labels. This dataset is often used as a benchmark for computer vision
researchers to compare their approaches. Ethical issues related to the labels and
production of ImageNet are explored in The Politics of Images in Machine Learning
Training Sets by Crawford and Paglen.

Why Does Transfer Learning Often Help?
As we have seen, transfer learning works by using a model trained on one task to
perform a new task. In our example, we used a model trained on ImageNet to
classify images of digitised nineteenth century newspapers. It might seem strange
that transfer learning works in this case, since the images we are training our model
on are very different from the images in ImageNet. Although ImageNet does have a
category for newspapers, these largely consist of images of newspapers in the
context of everyday settings, rather than images cropped from the pages of
newspapers. So why is using a model trained on ImageNet still useful for a task
which has different labels and images to those in ImageNet?

When we looked at the diagram of a CNN model we saw that it is made of different
layers. These layers create representations of the input image which pick up on
particular features of an image for predicting a label. What are these features? They
could be ‘basic’ features, for example simple shapes. Or, they could be more
complex visual features, such as facial features. Various techniques have been
developed to help visualise the different layers of a neural network. These
techniques have found that the earlier layers in a neural network tend to learn more
‘basic’ features, for example they learn to detect basic shapes like circles, or lines,
whilst layers further into the network contain filters which encode more complex
visual features, such as eyes. Since many of these features capture visual properties
useful for many tasks, starting with a model that is already capable of detecting
features in images will help detect features which are important for the new task,
since these new features are likely to be variants on the features the model already
knows rather than new ones.

When a model is created in the fastai library using the cnn_learner  method, an
existing architecture is used as the “body” of the model. The deeper layers added
are known as the model’s “head”. The body uses the weights (parameters) learned
through training on ImageNet by default. The “head” part takes the output of the
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body as input before moving to a final layer which is created to fit the training data
you pass to cnn_learner . The fine_tune  method first trains only the head part of
the model i.e. the final few layers of the model, before ‘unfreezing’ the lower layers.
When these layers are ‘unfrozen’ the weights of the model are updated through the
process discussed above under ‘training’. We can also take more active control of
how much we train different layers of the model, something we will see as we move
through a full pipeline of training a deep learning model.

Suggested Experiments
It is important to develop a sense of what happens when you make changes to the
training process. We suggest making a copy of the lesson notebook and seeing what
happens if you make changes. Here are some suggestions:

Change the size of the input images defined in the Resize  item transform in
the ImageDataLoaders .

Change the model used in cnn_learner  from resnet18  to resnet34 .

Change the ‘metrics’ defined in cnn_learner . Some metrics included in fastai
can be found in the documentation.

Change the number of ‘epochs’ used in the fine_tune  method.

If something ‘breaks’, don’t worry! You can return to the original notebook to get
back to a working version of the code. In the next part of the lesson, the
components of a deep learning pipeline will be covered in more detail. Investigating
what happens when you make changes will be an important part of learning how to
train a computer vision model.

Part One Conclusion
In this lesson we:

Gave a high-level overview of the distinction between rule-based and machine
learning-based approaches to tackling a problem.

Showed a basic example of how to use fastai to create an image classifier with
relatively little time and training data.

Presented an overview of the steps of a deep learning pipeline and identified
points in this pipeline where humanities scholars should pay particular
attention.

Ran a crude experiment to try and verify if transfer learning is useful for our
computer vision classifier.
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In the next part of this lesson, we will build on these points and dive into more
detail.

Appendix: A Non-Scientific Experiment Assessing
Transfer Learning

The use of deep learning in the context of working with heritage data has not been
extensively researched. It is therefore useful to ‘experiment’ and validate whether a
particular technique is effective. For example, let’s see if transfer learning will prove
to be helpful when training a model to classify nineteenth century newspaper adverts
into two categories: those containing images and those without images. To do this,
we’ll create a new learner  with the same parameters as before but with the
pretrained  flag set to False . This flag tells fastai not to use transfer learning. We’ll

store this in a variable learn_random_start .

learn_random_start = cnn_learner(ad_data, resnet18, metrics=accuracy, 

pretrained=False)

Now that we have created a new learner, we’ll use the same fine_tune  method as
before and train for the same number of epochs  as last time.

learn_random_start.fine_tune(5)

epoch train_loss valid_loss accuracy time

0 1.303890 0.879514 0.460000 00:04

epoch train_loss valid_loss accuracy time

0 0.845569 0.776279 0.526667 00:05

1 0.608474 0.792034 0.560000 00:05

2 0.418646 0.319108 0.853333 00:05
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3 0.317584 0.233518 0.893333 00:05

4 0.250490 0.202580 0.906667 00:05

The best acurracy score we achieve when we randomly initialise the weights is
~90%. In comparison, if we go back to our original model, which is stored in a
variable learn , and use the validate()  method, we get the metrics (in this case
accuracy) calculated on the validation set:

learn.validate()

    (#2) [0.04488467052578926,0.9800000190734863]

We see that there is a fairly big difference between the two models’ performance.
We kept everything the same except the pretrained flag, which we set to False .
This flag determines if the model starts from the weights learned from training on
ImageNet or starts from ‘random’ weights.  This doesn’t conclusively prove that
transfer learning works, but it does suggest a sensible default for us to use.
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