1,903 research outputs found

    Upper limit for the D2H+ ortho-to-para ratio in the prestellar core 16293E (CHESS)

    Full text link
    The H3+ ion plays a key role in the chemistry of dense interstellar gas clouds where stars and planets are forming. The low temperatures and high extinctions of such clouds make direct observations of H3+ impossible, but lead to large abundances of H2D+ and D2H+, which are very useful probes of the early stages of star and planet formation. The ground-state rotational ortho-D2H+ 111-000 transition at 1476.6 GHz in the prestellar core 16293E has been searched for with the Herschel/HIFI instrument, within the CHESS (Chemical HErschel Surveys of Star forming regions) Key Program. The line has not been detected at the 21 mK km/s level (3 sigma integrated line intensity). We used the ortho-H2D+ 110-111 transition and para-D2H+ 110-101 transition detected in this source to determine an upper limit on the ortho-to-para D2H+ ratio as well as the para-D2H+/ortho-H2D+ ratio from a non-LTE analysis. The comparison between our chemical modeling and the observations suggests that the CO depletion must be high (larger than 100), with a density between 5e5 and 1e6 cm-3. Also the upper limit on the ortho-D2H+ line is consistent with a low gas temperature (~ 11 K) with a ortho-to-para ratio of 6 to 9, i.e. 2 to 3 times higher than the value estimated from the chemical modeling, making it impossible to detect this high frequency transition with the present state of the art receivers.Comment: Accepted in A&

    Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield

    Get PDF
    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown

    Millimeter imaging of HD 163296: probing the disk structure and kinematics

    Full text link
    We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 Msun. The disk inclination with respect to the line of sight is 46+-4 deg with a position angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7 mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion.Comment: Accepted for publication on A&A, 16 page

    Primary and secondary eclipse spectroscopy with JWST: exploring the exoplanet parameter space

    Get PDF
    Eclipse exoplanet spectroscopy has yielded detection of H_2O, CH_4, CO_2 and CO in the atmosphere of hot jupiters and neptunes. About 40 large terrestrial planets are announced or confirmed, two of which are transiting, and another deemed habitable. Hence the potential for eclipse spectroscopy of terrestrial planets with James Webb Space Telescope (JWST) has become an active field of study. We explore the parameter space (type of stars, planet orbital periods and types, and instruments/wavelengths) in terms of the signal-to-noise ratio (S/N) achievable on the detection of spectroscopic features. We use analytic formula and model data for both the astrophysical scene and the instrument, to plot S/N contour maps, while indicating how the S/N scales with the fixed parameters. We systematically compare stellar photon noise-only figures with ones including detailed instrumental and zodiacal noises. Likelihood of occurring targets is based both on model and catalog star population of the solar neighborhood. The 9.6 micron ozone band is detectable (S/N = 3) with JWST, for a warm super-earth 6.7 pc away, using ~2% of the 5-year nominal mission time (summing observations, M4V and lighter host star for primary eclipses, M5V for secondary). If every star up to this mass limit and distance were to host a habitable planet, there should be statistically ~1 eclipsing case. Investigation of systematic noises in the co-addition of 5 years worth-, tens of days separated-, hours-long observations is critical, complemented by dedicated characterisation of the instruments, currently in integration phase. The census of nearby transiting habitable planets must be complete before the beginning of science operations.Comment: Accepted for publication in A&A, 16 pages, 19 figure

    Exploring the parameter space of MagLIF implosions using similarity scaling. I. Theoretical framework

    Full text link
    Magneto-inertial fusion (MIF) concepts, such as the Magnetized Liner Inertial Fusion (MagLIF) platform [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)], constitute a promising path for achieving ignition and significant fusion yields in the laboratory. The space of experimental input parameters defining a MagLIF load is highly multi-dimensional, and the implosion itself is a complex event involving many physical processes. In the first paper of this series, we develop a simplified analytical model that identifies the main physical processes at play during a MagLIF implosion. Using non-dimensional analysis, we determine the most important dimensionless parameters characterizing MagLIF implosions and provide estimates of such parameters using typical fielded or experimentally observed quantities for MagLIF. We then show that MagLIF loads can be "incompletely" similarity scaled, meaning that the experimental input parameters of MagLIF can be varied such that many (but not all) of the dimensionless quantities are conserved. Based on similarity-scaling arguments, we can explore the parameter space of MagLIF loads and estimate the performance of the scaled loads. In the follow-up papers of this series, we test the similar scaling theory for MagLIF loads against simulations for two different scaling "vectors", which include current scaling and rise-time scaling.Comment: 24 pages, submitted to Physics of Plasma
    corecore