1,903 research outputs found
Upper limit for the D2H+ ortho-to-para ratio in the prestellar core 16293E (CHESS)
The H3+ ion plays a key role in the chemistry of dense interstellar gas
clouds where stars and planets are forming. The low temperatures and high
extinctions of such clouds make direct observations of H3+ impossible, but lead
to large abundances of H2D+ and D2H+, which are very useful probes of the early
stages of star and planet formation. The ground-state rotational ortho-D2H+
111-000 transition at 1476.6 GHz in the prestellar core 16293E has been
searched for with the Herschel/HIFI instrument, within the CHESS (Chemical
HErschel Surveys of Star forming regions) Key Program. The line has not been
detected at the 21 mK km/s level (3 sigma integrated line intensity). We used
the ortho-H2D+ 110-111 transition and para-D2H+ 110-101 transition detected in
this source to determine an upper limit on the ortho-to-para D2H+ ratio as well
as the para-D2H+/ortho-H2D+ ratio from a non-LTE analysis. The comparison
between our chemical modeling and the observations suggests that the CO
depletion must be high (larger than 100), with a density between 5e5 and 1e6
cm-3. Also the upper limit on the ortho-D2H+ line is consistent with a low gas
temperature (~ 11 K) with a ortho-to-para ratio of 6 to 9, i.e. 2 to 3 times
higher than the value estimated from the chemical modeling, making it
impossible to detect this high frequency transition with the present state of
the art receivers.Comment: Accepted in A&
Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield
The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown
Symptomatology under storm conditions in the north atlantic in control subjects and in persons with bilateral labyrinthine defects
Motion sickness under conditions of stress and anxiety - role of vestibular apparatu
Millimeter imaging of HD 163296: probing the disk structure and kinematics
We present new multi-wavelength millimeter interferometric observations of
the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays
both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust
properties have been obtained comparing the observations with self-consistent
disk models for the dust and CO emission. The circumstellar disk is resolved
both in the continuum and in CO. We find strong evidence that the circumstellar
material is in Keplerian rotation around a central star of 2.6 Msun. The disk
inclination with respect to the line of sight is 46+-4 deg with a position
angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7
mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane.
The dust continuum emission is asymmetric and confined inside a radius of 200
AU while the CO emission extends up to 540 AU. The comparison between dust and
CO temperature indicates that CO is present only in the disk interior. Finally,
we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O.
We argue that these results support the idea that the disk of HD 163296 is
strongly evolved. In particular, we suggest that there is a strong depletion of
dust relative to gas outside 200 AU; this may be due to the inward migration of
large bodies that form in the outer disk or to clearing of a large gap in the
dust distribution by a low mass companion.Comment: Accepted for publication on A&A, 16 page
Recommended from our members
Progress in the development of a contactless ultrasonic processing route for alloy grain refinement
A high frequency tuned electromagnetic (EM) induction coil can be used to induce ultrasonic pressure waves leading to gas cavitation in alloy melts. This is a useful ‘contactless’ approach compared to the usual immersed sonotrode technique. One then expects the same benefits obtained in the traditional ultrasonic treatment (UST) of melts, such as degassing, microstructure refinement and dispersion of particles. However, such an approach avoids melt contamination due to probe erosion prevalent in immersed sonotrodes and it has the potential to be used on higher temperature and reactive alloys. Induction stirring due to the Lorentz force produced by the coil is an added benefit, allowing for the treatment of large melt volumes, a current limitation of UST systems. At ultrasonic frequencies (> 20 kHz), due to the ‘skin effect’ electromagnetic forces vibrate just a thin volume by the surface of the metal facing the induction source. These vibrations are transmitted as acoustic pressure waves into the bulk and to achieve sufficient fluctuation amplitudes for cavitation, acoustic resonance is sought by carefully adjusting the generator frequency. This is akin to the tuning of a musical instrument, where the geometry and sound properties of the metal, crucible and surrounding structure play an important part. In terms of modelling, this is a multi-physics system, since fluid flow with heat transfer and phase change are coupled to electromagnetic and acoustic fields. The various models used and their coupling are explained in this paper, together with the various complications arising by the physics of cavitation. Experimental validation is obtained on a prototype rig featuring a conical induction coil inserted into the melting crucible containing the various alloys being examined. When resonance is reached, measurements demonstrate strong stirring, evidence of cavitation and finally grain refinement
Primary and secondary eclipse spectroscopy with JWST: exploring the exoplanet parameter space
Eclipse exoplanet spectroscopy has yielded detection of H_2O, CH_4, CO_2 and
CO in the atmosphere of hot jupiters and neptunes. About 40 large terrestrial
planets are announced or confirmed, two of which are transiting, and another
deemed habitable. Hence the potential for eclipse spectroscopy of terrestrial
planets with James Webb Space Telescope (JWST) has become an active field of
study. We explore the parameter space (type of stars, planet orbital periods
and types, and instruments/wavelengths) in terms of the signal-to-noise ratio
(S/N) achievable on the detection of spectroscopic features. We use analytic
formula and model data for both the astrophysical scene and the instrument, to
plot S/N contour maps, while indicating how the S/N scales with the fixed
parameters. We systematically compare stellar photon noise-only figures with
ones including detailed instrumental and zodiacal noises. Likelihood of
occurring targets is based both on model and catalog star population of the
solar neighborhood. The 9.6 micron ozone band is detectable (S/N = 3) with
JWST, for a warm super-earth 6.7 pc away, using ~2% of the 5-year nominal
mission time (summing observations, M4V and lighter host star for primary
eclipses, M5V for secondary). If every star up to this mass limit and distance
were to host a habitable planet, there should be statistically ~1 eclipsing
case. Investigation of systematic noises in the co-addition of 5 years worth-,
tens of days separated-, hours-long observations is critical, complemented by
dedicated characterisation of the instruments, currently in integration phase.
The census of nearby transiting habitable planets must be complete before the
beginning of science operations.Comment: Accepted for publication in A&A, 16 pages, 19 figure
Exploring the parameter space of MagLIF implosions using similarity scaling. I. Theoretical framework
Magneto-inertial fusion (MIF) concepts, such as the Magnetized Liner Inertial
Fusion (MagLIF) platform [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003
(2014)], constitute a promising path for achieving ignition and significant
fusion yields in the laboratory. The space of experimental input parameters
defining a MagLIF load is highly multi-dimensional, and the implosion itself is
a complex event involving many physical processes. In the first paper of this
series, we develop a simplified analytical model that identifies the main
physical processes at play during a MagLIF implosion. Using non-dimensional
analysis, we determine the most important dimensionless parameters
characterizing MagLIF implosions and provide estimates of such parameters using
typical fielded or experimentally observed quantities for MagLIF. We then show
that MagLIF loads can be "incompletely" similarity scaled, meaning that the
experimental input parameters of MagLIF can be varied such that many (but not
all) of the dimensionless quantities are conserved. Based on similarity-scaling
arguments, we can explore the parameter space of MagLIF loads and estimate the
performance of the scaled loads. In the follow-up papers of this series, we
test the similar scaling theory for MagLIF loads against simulations for two
different scaling "vectors", which include current scaling and rise-time
scaling.Comment: 24 pages, submitted to Physics of Plasma
Recommended from our members
Acoustic resonance for contactless ultrasonic cavitation in alloy melts
Contactless ultrasound is a novel, easily implemented, technique for the Ultrasonic Treatment (UST) of liquid metals. Instead of using a vibrating sonotrode probe inside the melt, which leads to contamination, we consider a high AC frequency electromagnetic coil placed close to the metal free surface. The coil induces a rapidly changing Lorentz force, which in turn excites sound waves. To reach the necessary pressure amplitude for cavitation with the minimum electrical energy use, it was found necessary to achieve acoustic resonance in the liquid volume, by finely tuning the coil AC supply frequency. The appearance of cavitation was then detected experimentally with an externally placed ultrasonic microphone and confirmed by the reduction in grain size of the solidified metal. To predict the appearance of various resonant modes numerically, the exact dimensions of the melt volume, the holding crucible, surrounding structures and their sound properties are required. As cavitation progresses the speed of sound in the melt changes, which in practice means resonance becomes intermittent. Given the complexity of the situation, two competing numerical models are used to compute the soundfield. A high order time-domain method focusing on a particular forcing frequency and a Helmholtz frequency domain method scanning the full frequency range of the power supply. A good agreement is achieved between the two methods and experiments which means the optimal setup for the process can be predicted with some accuracy
- …