492 research outputs found

    Advances and Pitfalls in the Analysis and Interpretation of Resting-State FMRI Data

    Get PDF
    The last 15 years have witnessed a steady increase in the number of resting-state functional neuroimaging studies. The connectivity patterns of multiple functional, distributed, large-scale networks of brain dynamics have been recognised for their potential as useful tools in the domain of systems and other neurosciences. The application of functional connectivity methods to areas such as cognitive psychology, clinical diagnosis and treatment progression has yielded promising preliminary results, but is yet to be fully realised. This is due, in part, to an array of methodological and interpretative issues that remain to be resolved. We here present a review of the methods most commonly applied in this rapidly advancing field, such as seed-based correlation analysis and independent component analysis, along with examples of their use at the individual subject and group analysis levels and a discussion of practical and theoretical issues arising from this data ‘explosion’. We describe the similarities and differences across these varied statistical approaches to processing resting-state functional magnetic resonance imaging signals, and conclude that further technical optimisation and experimental refinement is required in order to fully delineate and characterise the gross complexity of the human neural functional architecture

    Quantitative Intensity Harmonization of Dopamine Transporter SPECT Images Using Gamma Mixture Models

    Get PDF
    PURPOSE: Differences in site, device, and/or settings may cause large variations in the intensity profile of dopamine transporter (DAT) single-photon emission computed tomography (SPECT) images. However, the current standard to evaluate these images, the striatal binding ratio (SBR), does not efficiently account for this heterogeneity and the assessment can be unequivalent across distinct acquisition pipelines. In this work, we present a voxel-based automated approach to intensity normalize such type of data that improves on cross-session interpretation. PROCEDURES: The normalization method consists of a reparametrization of the voxel values based on the cumulative density function (CDF) of a Gamma distribution modeling the specific region intensity. The harmonization ability was tested in 1342 SPECT images from the PPMI repository, acquired with 7 distinct gamma camera models and at 24 different sites. We compared the striatal quantification across distinct cameras for raw intensities, SBR values, and after applying the Gamma CDF (GDCF) harmonization. As a proof-of-concept, we evaluated the impact of GCDF normalization in a classification task between controls and Parkinson disease patients. RESULTS: Raw striatal intensities and SBR values presented significant differences across distinct camera models. We demonstrate that GCDF normalization efficiently alleviated these differences in striatal quantification and with values constrained to a fixed interval [0, 1]. Also, our method allowed a fully automated image assessment that provided maximal classification ability, given by an area under the curve (AUC) of AUC = 0.94 when used mean regional variables and AUC = 0.98 when used voxel-based variables. CONCLUSION: The GCDF normalization method is useful to standardize the intensity of DAT SPECT images in an automated fashion and enables the development of unbiased algorithms using multicenter datasets. This method may constitute a key pre-processing step in the analysis of this type of images.Instituto de Salud Carlos III FI14/00497 MV15/00034Fondo Europeo de Desarrollo Regional FI14/00497 MV15/00034ISCIII-FEDER PI16/01575Wellcome Trust UK Strategic Award 098369/Z/12/ZNetherland Organization for Scientific Research NWO-Vidi 864-12-00

    Group-PCA for very large fMRI datasets

    Get PDF
    Increasingly-large datasets (for example, the resting-state fMRI data from the Human Connectome Project) are demanding analyses that are problematic because of the sheer scale of the aggregate data. We present two approaches for applying group-level PCA; both give a close approximation to the output of PCA applied to full concatenation of all individual datasets, while having very low memory requirements regardless of the number of datasets being combined. Across a range of realistic simulations, we find that in most situations, both methods are more accurate than current popular approaches for analysis of multi-subject resting-state fMRI studies. The group-PCA output can be used to feed into a range of further analyses that are then rendered practical, such as the estimation of group-averaged voxelwise connectivity, group-level parcellation, and group-ICA. (C) 2014 Elsevier Inc. All rights reserved.Peer reviewe

    Hand classification of fMRI ICA noise components

    Get PDF
    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets

    Structural and Functional Reorganization of the Brain in Migraine Without Aura

    Get PDF
    It remains unknown whether migraine headache has a progressive component in its pathophysiology. Quantitative MRI may provide valuable insight into abnormal changes in the migraine interictum and assist in identifying disrupted brain networks. We carried out a data-driven study of structural integrity and functional connectivity of the resting brain in migraine without aura. MRI scanning was performed in 36 patients suffering from episodic migraine without aura and 33 age-matched healthy subjects. Voxel-wise analysis of regional brain volume was performed by registration of the T1-weighted MRI scans into a common study brain template using the tensor-based morphometry (TBM) method. Changes in functional synchronicity of the brain networks were assessed using probabilistic independent component analysis (ICA). TBM revealed that migraine is associated with reduced volume of the medial prefrontal cortex (mPFC). Among 375 functional brain networks, resting-state connectivity was decreased between two components spanning the visual cortex, posterior insula, and parietal somatosensory cortex. Our study reveals structural and functional alterations of the brain in the migraine interictum that may stem from underlying disease risk factors and the “silent” aura phenomenon. Longitudinal studies will be needed to investigate whether interictal brain changes are progressive and associated with clinical disease trajectories

    Impact of Working Memory Load on fMRI Resting State Pattern in Subsequent Resting Phases

    Get PDF
    BACKGROUND: The default-mode network (DMN) is a functional network with increasing relevance for psychiatric research, characterized by increased activation at rest and decreased activation during task performance. The degree of DMN deactivation during a cognitively demanding task depends on its difficulty. However, the relation of hemodynamic responses in the resting phase after a preceding cognitive challenge remains relatively unexplored. We test the hypothesis that the degree of activation of the DMN following cognitive challenge is influenced by the cognitive load of a preceding working-memory task. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-five healthy subjects were investigated with functional MRI at 3 Tesla while performing a working-memory task with embedded short resting phases. Data were decomposed into statistically independent spatio-temporal components using Tensor Independent Component Analysis (TICA). The DMN was selected using a template-matching procedure. The spatial map contained rest-related activations in the medial frontal cortex, ventral anterior and posterior cingulate cortex. The time course of the DMN revealed increased activation at rest after 1-back and 2-back blocks compared to the activation after a 0-back block. CONCLUSION/SIGNIFICANCE: We present evidence that a cognitively challenging working-memory task is followed by greater activation of the DMN than a simple letter-matching task. This might be interpreted as a functional correlate of self-evaluation and reflection of the preceding task or as relocation of cerebral resources representing recovery from high cognitive demands. This finding is highly relevant for neuroimaging studies which include resting phases in cognitive tasks as stable baseline conditions. Further studies investigating the DMN should take possible interactions of tasks and subsequent resting phases into account

    Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    Get PDF
    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia
    corecore