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Increasingly-large datasets (for example, the resting-state fMRI data from the Human Connectome Project) are
demanding analyses that are problematic because of the sheer scale of the aggregate data. We present two
approaches for applying group-level PCA; both give a close approximation to the output of PCA applied to full
concatenation of all individual datasets, while having very low memory requirements regardless of the number

Ié&}};vlv ords: of datasets being combined. Across a range of realistic simulations, we find that in most situations, both methods
PCA are more accurate than current popular approaches for analysis of multi-subject resting-state fMRI studies. The
ICA group-PCA output can be used to feed into a range of further analyses that are then rendered practical, such as
Big data the estimation of group-averaged voxelwise connectivity, group-level parcellation, and group-ICA.
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Introduction components), resulting in relatively extended networks being

Many branches of science are needing to tackle problems associated
with the increasing scale of datasets. A common approach for identify-
ing the important information within large amounts of data is to identi-
fy recurring patterns, achieving intelligent data reduction. A generic
approach for this - one that is often used to reduce data to its dominant
constituents - is principal component analysis (PCA). However, even
such a simple approach is computationally challenging for very large
datasets. Here we are specifically interested in the use of resting-state
functional magnetic resonance imaging (rfMRI), a powerful and popular
approach for studying functional brain networks. Analysis of a multi-
subject rfMRI imaging study often begins at the group level, for
example, estimating group-averaged functional connectivity across
all subjects in a resting-state fMRI study. For very large datasets,
this can become problematic, as the computational expense and/or
memory requirements for many analysis methods increase as the
number of subjects increases, and so can quickly become impractical.
Several important analysis approaches can be applied in a computa-
tionally practical way if the dataset can first be reduced by a group-
level PCA.

For example, one of the most widely used methods for analysing such
data is independent component analysis (ICA), which identifies multiple
distinct networks simultaneously from a given dataset. ICA is often ap-
plied with relatively low dimensionality (the number of independent

* Corresponding author. Fax: +44 1865 222717.
E-mail address: steve@fmrib.ox.ac.uk (S.M. Smith).

http://dx.doi.org/10.1016/j.neuroimage.2014.07.051
1053-8119/© 2014 Elsevier Inc. All rights reserved.

estimated. ICA can also be used to obtain a detailed data-driven functional
parcellation, when applied with relatively high dimensionality, e.g., when
more than 50 ICA components are estimated. In both cases, if multiple
subjects are to be co-analysed (e.g., in order to compare the resting-
state networks between subjects), most researchers begin by carrying
out a (low- or high-dimensional) ICA on the group dataset as a whole.
The groupwise ICA components can then be mapped back onto individual
subjects in order to allow for cross-subject network comparisons.

For such data-driven decompositions of multi-subject datasets, the
first (and most computationally intensive) stage in the analysis is
normally to reduce the entire dataset down to a set of “group-average”
spatial eigenvectors, using principal component analysis (PCA, based on
singular value decomposition or SVD). The most natural approach here
is to temporally demean and concatenate all subjects' datasets, and
apply PCA — effectively treating all the data as if it were one single
huge dataset. For an n-dimensional group-ICA, the resulting n strongest
spatial eigenvectors can then be fed into the core ICA unmixing
algorithm, which identifies the set of group-average spatially-
independent components. This last stage is not in general computation-
ally burdensome, because the data now comprises at most a few
hundred spatial eigenvectors — the dataset has been reduced from the
size of (voxels x timepoints x subjects) to (voxels x n).

However, as increasingly large datasets/databases are being generat-
ed, with large numbers of timepoints and voxels in each subject's
dataset, and very large numbers of subjects being combined, there are
major computational challenges associated with group-level data-
driven analyses. Current approaches for combining all subjects’ datasets,
and applying basic dimensionality reduction, cannot be run using the
computational facilities available to most researchers, primarily because
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of the very large memory requirements. There are two mathematically
equivalent ways to estimate the PCA from the temporally-concatenated
data from all subjects: a) estimate for each subject the voxels x voxels
covariance matrix of temporal correlations (this is very large, as the num-
ber of voxels is large), and then average over subjects; or, b) estimate the
(subjects x timepoints) x (subjects x timepoints) covariance matrix of
spatial correlations, which will be very large if the number of subjects
or number of individual-session timepoints is large.

Existing approaches to this computational problem include the
initial reduction of each subject's dataset to a (normally comparatively
small) number of spatial eigenvectors, before these are then combined
across subjects, and a final group-wise PCA computed (Calhoun et al.,
2001). However, this approach has potential limitations: a) There can
be a significant loss of accuracy (and even bias in final cross-subject
comparisons) by virtue of the within-subject reduction; for example,
the within-subject dimensionality reduction is variance-greedy, and is
not able to de-prioritise potentially strong subject-specific artefacts
versus group-common (potentially less strong) components. b) The
amount of memory required is proportional to the number of subjects
analysed, and hence can still exceed available resources, with large
numbers of subjects analysed.

Here we present two group-PCA approaches which generate an
accurate approximation to PCA applied to full temporal concatenation
of all subjects, in both cases avoiding the reduction of individual subjects
to a small number of principal components. Both methods' memory
requirements do not increase with increasing numbers of subjects
analysed, and overall execution time scales linearly with the number
of subjects. We validate the accuracy and computational effectiveness
of the approaches using rich simulations, comparing against alternative
approaches, with favourable results. We also validate against an
extremely large rfMRI dataset from the Human Connectome Project
(HCP), utilising a 24-core compute server with 1.25 TB of RAM to calcu-
late the “gold standard” empirical result, achieving an accuracy of great-
er than 99.99%.

The first of the new approaches for large group-level PCA (referred
to as MIGP — MELODIC's Incremental Group-PCA), was developed
specifically with rfMRI in mind, and the validations described below
use data that attempts to match the characteristics (dimensions, intrin-
sic rank, etc.) of rfMRI data. Since the original development and valida-
tion of MIGP, we have become aware of closely related approaches
being developed in computer science, where thorough theoretical
investigations of the mathematical properties have been reported
(with very positive conclusions regarding the accuracy of these ap-
proaches) (Baker et al., 2012; Rehtifek, 2010). The HCP has already
started disseminating group-average “dense connectomes” (full
voxelwise/vertexwise correlation matrices) calculated using MIGP,
which is now released as part of the MELODIC ICA tool in FSL (FMRIB
Software Library, www.fmrib.ox.ac.uk/fsl).

The second, distinct, approach (referred to as SMIG — Small-
Memory Iterated Group-PCA) builds on top of the original method pro-
posed in Hyvdrinen and Smith (2012), achieving increased accuracy
compared with the original approach, by iterating the main
estimation of group-average eigenvectors several times. While
both MIGP and SMIG have very low-memory requirements, and
are accurate, MIGP may be more time-efficient if file [/O dominates
total compute time, and SMIG would be more time-efficient
otherwise.

These approaches will hopefully also be of value for analysing large
datasets from other modalities (and branches of science), particularly
in this era of “Big Data”; however, here we have specifically tailored
our detailed simulations to the characteristics of resting-state fMRI
data. Note that we have specified resting-state specifically rather than
also task-fMRI, because data reduction in the latter case is more
straightforward computationally for large studies — in the cases
where one does not have to account for the random temporal phase
across datasets.

Method
Background

Each subject's dataset comprising t timepoints and v voxels can be
represented as a 2-dimensional space-time matrix Y(; .. ,). We assume
that the data has already been preprocessed to remove artefacts and
align the data spatially into a standard space (co-ordinate system), so
that the voxels are anatomically compatible across all subjects. We
also assume that each voxel's timeseries has been demeaned (and po-
tentially variance-normalised (Beckmann and Smith, 2004)).

If we were to carry out a single-subject n-dimensional spatial-ICA,
we would first apply a PCA, or equivalently the singular value decompo-
sition, for example, representing the data as:

Y(txv)zu(txn) X S(nxn) X V,(nxv)v (])

where n is typically much smaller than ¢, U is the set of temporal eigen-
vectors, Vis the set of spatial eigenvectors, and the eigenvalues (compo-
nents' strengths) lie on the diagonal of S (the above assumes that the t-n
weakest components have already been discarded). ICA is then applied
to the matrix V, estimating a new set of spatial maps, which are linear
combinations of the maps in V, and which are maximally independent
of each other.

In the case of a multi-subject dataset, a natural way to generate a
group-averaged set of spatial eigenvectors (to feed into analyses such
as group-average parcellation or group-ICA) is to temporally concate-
nate all s subjects' datasets, and apply PCA + ICA as described above,
or, equivalently, to average the v x v matrices of temporal covariances
across all subjects. The resulting PCA-based approximation will then
be the same as above, but now with n x s “timepoints” in the temporally
concatenated data.

Unfortunately, with large datasets and large numbers of subjects, it
becomes impractical to form this full concatenated dataset and then
run a full PCA; memory limitations and/or computational time become
prohibitive. Various approaches have been suggested previously for
large multi-subject fMRI datasets, and we now describe the most
relevant prior work.

Calhoun et al. (2001) suggested approximating temporal concatena-
tion by first reducing each subject's dataset to the top m spatial eigen-
vectors, then concatenating these eigenvectors (estimated separately
for each subject) across all subjects, before running a final PCA to further
reduce this dataset to the top n eigenvectors, to be fed into ICA. Typically
m = n, meaning that each subject is reduced to the same number of PCA
components as the final group-average ICA will estimate. Although
using a small value for m limits the memory requirements for these op-
erations, the data size does scale linearly with the number of subjects,
which can eventually become impractically large. Furthermore, impor-
tant information may be lost unless m is relatively large (which in
general is not the case when using this approach); information may
be hard to estimate at the single-subject level, but could be estimable
and important at the group level.

MIGP — MELODIC's Incremental Group-PCA

MIGP is an incremental approach that aims to provide a very close
approximation to full temporal concatenation followed by PCA, but
without the large memory requirements. The high accuracy is achieved
by never reducing individual subjects' datasets to small numbers of PCA
components. The incremental approach keeps an “internal” PCA space
of m weighted spatial eigenvectors, where m is typically larger than
the number of timepoints in each individual dataset. By “weighted”,
we mean that the eigenvalues (component strengths) are incorporated
into the matrix of spatial eigenvectors. The final set of m components,
representing the group-average (or temporally concatenated) PCA out-
put, can then be reduced to the desired dimensionality n by simply
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keeping the top n components, and, if required, discarding the
weightings (eigenvector amplitudes). We now describe the approach
in more detail.

Start by temporally concatenating a number of subjects' datasets
such that the number of combined timepoints is larger than m. Typically
we might set m = 2 t, and begin by concatenating 2-3 datasets. This
dataset is then fed into m-dimensional PCA, and the matrix W, « vy =
Stm = my X V{m x vy is kept. Note that this is not just the set of (unweight-
ed) eigenvectors; each is weighted by its respective eigenvalue, which is
an important distinction — the eigenvalues, characterizing the strength
of an effect, are here used to scale the eigenmaps (spatial eigenvectors)
so that the strength is retained in the reduced subspace. W becomes a
running estimate of the final group-average set of spatial eigenvectors,
and can be considered a pseudo-timeseries matrix of m “timepoints”
and v voxels. For each additional subject's dataset in turn, we now incre-
mentally update W, by concatenating W with each dataset Y;, and apply-
ing PCA to reduce back to an updated W, again with just the top m
components kept (see Appendix A). Because the eigenvalue weights
are kept in W, this approach automatically achieves the “right” balance
(relative weighting) between W and each new dataset — where “right”
means that the relative weighting between the running estimate and
new datasets matches what would have happened in the full-
temporal-concatenation scenario. In other words, this retains the over-
all variance of each batch of data.!

A computationally efficient approach for estimating the top m weight-
ed eigenvectors is to first estimate the “timepoints” x “timepoints”
covariance matrix, apply eigenvalue decomposition to extract the top m
temporal eigenvectors (e.g., using the efficient eigs function in MATLAB),
and then multiply these eigenvectors into the original data matrix to
obtain the weighted spatial eigenvectors. This avoids the need to estimate
the very large voxels x voxels covariance matrix.

MIGP does not increase at all in memory requirement with increas-
ing numbers of subjects, no large matrices are ever formed, and the
computation time scales linearly with the number of subjects. It is easily
parallelisable, simply by applying the approach in parallel to subsets of
subjects, and then combining across these with the same “concatenate
and reduce” approach described above. (This is mathematically almost
identical to the fully-serial algorithm, particularly for large numbers of
subjects.)

SMIG — Small-Memory Iterative Group-PCA

Hyvdrinen and Smith (2012) suggested a very fast and low-memory
method which rotated each subject's data matrix using a rotation de-
rived from the correlation between the original data matrix and the
group-averaged data matrix (i.e., the pure mean of all raw timeseries
matrices from all subjects). All subjects' rotated data matrices can then
be averaged, and PCA applied, without ever needing to form large
concatenated data matrices of timeseries or eigenvectors — although
two “passes through” all of the original datasets is necessary.

Building on this, and noting that the initial group-average data ma-
trix will not have intrinsically “high resting-state correlation CNR”

! Itis easy to show that the covariance of concatenated datasets equals the sum of the
covariances of the individual datasets (even if they have different lengths and overall var-
iance). Given the decomposition Y = USV' = UW (where W is the weighted spatial eigen-
vectors), the (voxels x voxels) covariance is WU'UW = W'W. Hence it is clear that when
taking multiple (previously concatenated) datasets and concatenating these with a new
single dataset, the concatenation followed by covariance estimation is equivalent to sum-
ming the two separate W'W estimates (one for the previously combined multiple datasets
and one for the new dataset) — hence no change in the relative weighting of the two sep-
arate covariances is necessary in order for the estimate of covariance to be equivalent to
the temporal concatenation of a new subject onto a previously concatenated set of sub-
jects. An alternative way of establishing that the concatenation of W with a new data set
Y; is using the correct weighting is to note that, due to U being an orthonormal basis,
any eigenvalue/vector pair {S;, V;} of the covariance matrix Cov(Y;) is also an eigenvalue/
vector pair of UCov(W)U’, and therefore transforms into an eigenvalue/vector pair {S;U’
V;} of the covariance matrix Cov(W).

(due to the random phase of RSN timeseries in different datasets
being averaged), we have developed an iterated approach to the esti-
mation of the group-averaged spatial eigenvectors. We now describe
the mathematical justification for this method, showing that the itera-
tions converge towards the same output as PCA applied to full temporal
concatenation.

Denote by Y; the data matrix of the i-th subject in a group of s sub-
jects. We want to approximate the group data by a single set of
(group) spatial patterns collected as the n rows of the matrix W, as
well as the individual time course matrices M;. This is accomplished by
solving the following optimization problem:

i 2
T\X/l.r;\/l,» "Yi(txv)_Mi(txn)W(nxv)" (2)
i

with respect to all the time course matrices and the single spatial pat-
tern matrix.

This formulation is equivalent to temporally concatenating the
group data into a big matrix and approximating it by a low-rank matrix,
but for notational convenience, we do not form such a big matrix. In
general, the problem could be solved in the concatenated matrix formu-
lation simply by applying SVD. However, we consider here a simpler
and more efficient optimization approach which does not need explicit
temporal concatenation.

Our approach is based on two principles. First, we use an alternating
variables optimization of the M; and W in the objective function in
Eq. (2) above, which leads to surprisingly simple iteration steps. Second,
we divide the computations into two stages: In the first stage, we solve
the objective above for a larger number of spatial patterns m than the
number n that we want as the final output, and in the second stage,
we reduce the number from m to n by ordinary SVD/EVD computation.
The justification for this two-stage procedure is similar to MIGP: In the
first stage, we compute only a rough approximation of the m-
dimensional reduced representation because each iteration may be
quite slow due to the high dimensionality of the data and/or slow access
to the data matrices Y; and thus we want to preserve more information
in the representation than just the n dimensions.

There is clearly some indeterminacy in the optimization problem,
since we could multiply W from the left by any invertible matrix, and
multiply all the M; from the right by the inverse of that matrix, without
affecting the value of the objective function. To reduce this indetermina-

J— T
cy, we constrain the concatenated form of M;, M = (MT, MST) to
have orthogonal columns of unit norm, i.e.,

S
STMIM; =1 3)
i=1

We impose this instead of the more typical constraint WW! = |, also
found in ICA, because this constraint enables the computation of W in
such a form that the singular values (variances of different directions)
are preserved. This is crucial if we want to further reduce the dimension
in a second stage SVD/EVD.

Now, we can solve the optimization problem by an alternating vari-
ables approach: optimizing the function first with respect to M;, then
with respect to W, and iterating this.

To initialize the algorithm, we take the average over the Y;,

1

This implies choosing the first-stage dimension m to be equal to the
number of timepoints (number of rows in Y;). If we choose to use a
smaller m, we can simply reduce the dimension of this initial value by
ordinary PCA, without changing anything in what follows.
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Given some value of W, the optimal M; are given by first computing
M;—Y;W" for all i (5)

and then projecting M on the constraint set by orthogonalizing it as
—1/2
M, —M; <Z Mi,TM,.,> for all i. (6)
7

This is because by orthogonality of M;, the objective is equal to
tr(>_MTY;WT") plus terms which are constant with respect to M; on

the constraint set. In general, to maximize an objective tr(MTZ)

under the orthogonality constraint (i.e. on the Stiefel manifold), the
projection of its gradient Z on the tangent space of the Stiefel manifold
should vanish, which means Z—MZ™M = 0, and this holds for the M;
computed above.

Likewise, given all the M;, the optimal W can be found by computing

WS MY, (7)
i

which follows from basic linear algebra since the pseudoinverse of M is
equal to M" due to orthogonality.

The initialization in Eq. (4) and the subsequent three formulae in
Egs. (5), (6), and (7) above give the iterations of the (first stage of)
SMIG. Thus, we have shown that SMIG is a principled method for finding
the optimal approximation of the group data in terms of M; and W. In
other words, SMIG is an iterative method for solving the SVD of the tem-
porally concatenated data matrix, since the two problems are equiva-
lent. In the limit of an infinite number of iterations, it will converge to
the true SVD of the data. If we take only a single iteration of the algo-
rithm we have the method proposed in Hyvarinen and Smith (2012).

We can also interpret these iterations as a power method. Grouping
the formulae together, we have

We—w {Z Y,-TY,} (8)

which should be followed by multiplying W from the left by the matrix
orthogonalizing M. The matrix in brackets is in fact the covariance ma-
trix (which is very large — voxels x voxels covariance matrix, but in
practice we do not need to compute this) of the temporally concatenat-
ed data (up to a multiplicative constant). Multiplying it repeatedly by W
leads to the power method, the most fundamental numerical algorithm
for computing the dominant eigenvectors. However, our normalisation
of W is different from that of usual implementations of the power meth-
od, and particularly suitable for our two-stage method.

Using group-PCA output to generate the “dense connectome”

It is now trivial to show that one can easily estimate the large group-
average “dense connectome” (“space” by “space” matrix of voxel-level
temporal correlations) from the PCA output, should this be desired —
starting conceptually from the fully-temporally-concatenated dataset
Y. Forming the dense connectome is not necessary if one only wishes
to run group-level ICA, because normally all that is passed onto
spatial-ICA, after the initial PCA, is the group-PCA spatial eigenvectors,
as described above. However, if we do want to estimate the group-
average v x v covariance matrix (dense connectome), we have:

covariance(Y) = Y'Y=VSU'USV' = VS'SV' = W'W. 9)

where W can be the weighted spatial eigenvectors output by (e.g.)
MIGP. Thus we do not need to estimate any temporal eigenvectors.
Note that ICA component timeseries are not in general orthogonal, so

the same approach cannot be applied using ICA spatial maps. Hence, if
we calculate the matrix of the weighted eigenvectors W, we can then
later trivially estimate from that the v x v covariance matrix, and from
this the closely-related dense connectome (correlation matrix).

This simple result is not surprising if we consider W to comprise all
voxels' pseudo-timeseries — if two voxels have similar timeseries (on
average in the group), they will also have similar weights across multi-
ple spatial eigenvectors.

Naturally the estimation of the dense connectome implies having
enough RAM to estimate the v x v covariance matrix; part of the original
argument for needing more RAM-efficient methods was to avoid ever
having to estimate such a potentially large quantity (given that one
simple way of estimating a group-PCA is to first average all subjects’
individual v x v covariance matrices and then perform an eigenvalue de-
composition). However, the above approach (for estimating the dense
connectome) only requires a single copy of this large matrix, whereas
a running sum/average would require at least two copies, i.e., at least
doubling the RAM requirements. Secondly, if the purpose of the
group-level analysis is indeed to carry out group-PCA (and not just
estimate the group-level dense connectome), then the RAM require-
ment for passing the group-average dense connectome into an eigen-
value decomposition would be much larger than that just required to
store a single copy of the dense connectome, whereas the PCA compo-
nents estimated by our methods do not ever require the formation of
this matrix, or the running of a large-RAM PCA calculation.

Using group-PCA output to carry out group-level parcellation

For similar reasons, we can also feed the W matrix of pseudo-
timeseries into clustering algorithms, to achieve group-level spatial
parcellation on the basis of the “temporal” similarity of voxels. Standard
parcellation methods can be fed either from the raw W matrix, or from
the W'W correlation matrix, depending on the algorithm to be applied.

Empirical evaluations

We compare several group-PCA approaches:

TemporalConcat — full temporal concatenation of all subjects' datasets,
followed by PCA.

* MIGP — as described above.

* SMIG — as described above. We need to specify m (the internal dimen-
sionality retained) and a (the number of iterations).

GIFT — the method of Calhoun et al. (2001), concatenating within-
subject PCA outputs across subjects, followed by a final PCA. We also
test GIFT with an internal dimensionality m double that of the final
output dimensionality; this keeps more subject-specific detail than
is normally done by default, at the cost of increased RAM requirement.
* MeanProjection — an approach utilised in old MELODIC software ver-
sions, that projects individual datasets onto a PCA-reduced version
of the group-average-data, concatenates the results across subjects,
and then reduces down with a final group-level PCA. In the context
of SMIG, this could be seen as a similar approach, but without the tem-
poral rotation that brings datasets “into phase” with each other.

We now present various results: simple calculation of RAM require-
ments for the different methods; accuracy results from a range of simu-
lations; and accuracy results for MIGP, on a large real dataset.

RAM requirements — different methods

We first estimated the RAM required by several group-PCA methods,
as a function of number of timepoints, voxels, subjects and estimated di-
mensionality. For each method: the size of the largest “timeseries” data
matrix formed is estimated (in some cases, for example, this might be
voxels x timepoints, in others, voxels x timepoints x subjects, and in
others, voxels x subjects x dimensions). Additionally, the largest
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data covariance formed is estimated (either voxels x voxels, or
timepoints x timepoints, depending on the method). Simple testing in
MATLAB shows that running the most efficient SVD on a large data co-
variance matrix requires approximately double the total RAM than is
needed to just store the covariance matrix.

For our purposes then, we plot whichever is the larger of the two
quantities; the largest timeseries data matrix formed, and the doubled
covariance matrix size. Fig. 1 shows these maximum-RAM estimates
for a range of methods, under a number of different study scenarios.
We use approximate/typical values for 4 study scenarios: typical small
imaging studies; 1000 datasets from the “thousand functional
connectomes” (KFC) data (Biswal et al., 2010); 1200 subjects (that
will eventually be available) from the Human Connectome Project
(Van Essen et al., 2013), with a large number of timepoints per subject;
and 100,000 subjects’ datasets that will eventually be acquired by the
UK Biobank Imaging study (www.ukbiobank.ac.uk), if it runs to comple-
tion as hoped.

The voxel counts are either: 25,000 (number of brain voxels in MNI
standard space, working at the rather crude resolution of 4 mm);
200,000 (2 mm MNI-space brain voxels); and 100,000 (the approxi-
mate number of grayordinates in the HCP standard co-ordinate system,
with approximate 2 mm spacing between surface vertices and sub-
cortical voxels).

Full temporal concatenation does not continue to rise greatly for the
larger datasets, as might have been expected; this is because full tempo-
ral concatenation is mathematically equivalent to an approach based
around averaging the (very large) within-subject voxels x voxels covari-
ance matrices across all subjects. Therefore, once the dataset becomes
large enough, this latter approach becomes the more RAM-efficient
option, and hence the resulting RAM requirements stop increasing
with the number of subjects.

It can be seen that for none of these scenarios do the MIGP/SMIG
methods require large amounts of RAM — indeed never more than
around 8 GB.

Simulations — methods

Our primary evaluations were based on simulated datasets contain-
ing a hierarchy of effects, including structured signal and artefact in the
dataset for each simulated subject, and subject variability (including
outlier effects). We generated several distinct simulations, spanning a
range of different scenarios as described below.

The core of the simulation is to randomly generate a number of
(group-level ground truth) spatial maps (that will be modulated by ran-
domly distinct timecourses), which in the simplest simulations will be
exactly the same sets of maps for all subjects. The maps are randomly
generated and somewhat sparse, with a unity-standard-deviation
Gaussian random distribution embedded on top of values that are 0 in
most voxels, and 5 in a minority of voxels. We tested a range of methods
for defining these spatial maps, including pure Gaussian “noise”, and the
final results depended very little on the method chosen. The ground-
truth spatial maps may all have the same strength (amplitude), or
may have controllably variable amplitudes relative to each other.

Two sets of these spatial maps are created, representing two distinct
subject groups (sub-populations). The extent to which the two sets of
spatial maps are similar is controllable, varying from being identical
(group-difference = 0, i.e., we have just one population of subjects) to
being totally unrelated (group-difference = 1, i.e., we have two groups
of totally different subjects). The number of subjects formed in the two
groups can vary, from having no subjects in group 2 (again — we have
just one population of subjects), to having a single subject in group 2
(i.e., we have a single-subject outlier), to having multiple subjects in
the second group.

Individual subjects’ datasets are then created on the basis of the
“group-level” maps defined above. Each subject within a given group
has spatial maps with controllable similarity to the group-maps defined
above; each map for each subject has a controllable amount of subject-
specific variation added, and is then modulated by a single random
timecourse (taking the outer product of the spatial map and a random
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Fig. 1. RAM required for different group-PCA methods, analysing a range of study scenarios, shown using a log scale. See main text for detailed description and comments.
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timecourse). All components are then added to form the full t x v data
matrix. The subject-specific randomness can be added both to the spa-
tial map (both its shape and amplitude) before temporal modulation,
and after (the former therefore representing subject-specific alterations
to the spatial map, compared with the group ground-truth, and the lat-
ter representing unstructured measurement white-noise). Additionally,
a controlled number of subject-specific structured “artefact” compo-
nents (meaning that these do not correspond to any group-average
spatial effect) can be added.

Each method was evaluated using 4 primary measures — in all cases
“higher is better”:

1. Overall “TPR” (analogous to true positive rate). This is the percentage
of the total variance of the full set of ground-truth spatial maps that
can be explained by the eigenvectors output by a given group-PCA
method. It is calculated by projecting the former onto the latter,
and then dividing the sum of squares of the result against the sum
of squares of the former. If two groups of subjects were generated,
the combined (v x m x 2) space of all ground-truth spatial maps is
used.

2. TPR for group 1 only; the percentage of the variance of the ground-
truth space of the spatial maps from group 1 explained by the group-
PCA. In many cases this will be the “majority” group (as opposed to
outlier subjects).

3. TPR for group 2; in many cases this will be the accuracy of estimation
of outlier subjects.

4. Overall “1-FPR” (analogous to 1 — false positive rate). This is the frac-
tion of the estimated total spatial map space which lives in the space
of the ground-truth maps. A high value close to 1 means a low false
positive rate — estimated spatial eigenvectors only reflect the correct
underlying group-truths.

AIl TPR and 1-FPR values are reported as percentages. Each simula-
tion is run 10 times with different randomised data; results are there-
fore shown as boxplots depicting the TPR and 1-FPR distributions over
the 10 runs of each simulation.

Simulations — results

We now present results from a range of dataset scenarios, varying
dataset dimensions, as well as the relative sizes of various forms of
noise and subject variability. The full simulation parameter definitions
are listed within each figure.

In addition to the range of SMIG parameters reported on below, we
also tested the following parameter settings; however, because they
resulted in no (or very little) improved performance compared with
the settings reported on, we do not include any further reporting on
these. 1) With an internal (working) dimensionality m smaller than
the number of original session timepoints t, we found virtually no accu-
racy advantage in raising the number of iterations from 10 to 25, and so
do not report on more than 10 iterations. 2) With m = t, there was never
a significant improvement when moving from 5 to 10 iterations, so we do
not report on higher than 5. 3) With m = n (final output dimensionality),
results were often worse than when keeping a larger number of internal
components; a similar result was also found for m = 1.5n, though with
less of an accuracy loss. For m = 2n and m = 3n the results were very sim-
ilar, with a very slight improvement in a few scenarios using 3n (for only a
small CPU-time increase), and so we only reportonm = 3nand m =t
below.

Variations in subject variability and white noise (no artefacts)

Fig. 2 shows results from relatively “high CNR, low variability”
datasets (30 subjects, 200 timepoints). The first test has relatively low
white noise and a low subject-variability of 0.1 (meaning the extent to
which the underlying common spatial maps vary across subjects). All
methods perform well, being close to 100% accuracy in terms of both

TPR (finding the correct common maps) and 1-FPR (only estimating
the common maps and nothing extra).

The second test increases the subject-variability to 0.3, which might
be considered to be relatively high (although high-resolution fMRI data
with no spatial smoothing in the preprocessing might be expected to
exceed this). All methods are still doing well, with around ~94% accura-
cy. Interestingly, GIFT and MeanProjection perform very slightly better
than the other methods. In the case of GIFT, this might be because of
the potential “2-stage denoising” effect that could happen when the
dataset exactly matches the assumptions and parameters being used
by the method; given that GIFT is internally keeping exactly the correct
number of components (here 10) in each within-subject PCA, and
because this simulation has no subject-specific artefacts, then one
expects that the estimated set of components for each subject should
be close to perfect, achieving within-subject denoising effectively.
Then, at the group level, when combining across the sets of within-
subject components, the higher level of subject variability can be more
effectively dealt with, given that within-subject noise has been
suppressed.

The third test reverts to the lower level of subject variability, and in-
creases the white-noise to 10. Now GIFT becomes less accurate than the
best of the other methods, with MIGP and SMIG (after more than 2 iter-
ations) performing very well.

Interactions between subject-specific artefacts and estimated dimensionality

Fig. 3 shows the effects of adding in subject-specific artefact compo-
nents, and how the estimated dimensionality interacts with this. There
are 10 common (“good”) components in each subject's dataset, as well
as 30 subject-specific “artefact” components (a realistic ratio (Griffanti
et al.,, 2014)). The difference between the 3 tests is the number of final
estimated components, varying from being less than the true number
(first test), equal (second test), and greater (third test). Not
surprisingly, the TPR improves significantly when estimated dimen-
sionality is raised, and 1-FPR falls.

The performance of the best of the methods is now lower than be-
fore, with these more challenging scenarios, with iterated SMIG and
MIGP reaching ~63-88% accuracies (depending on the exact scenario).
Note however that TemporalConcat (often considered the “gold
standard” — but here we know the true gold standard set of maps that
were fed into the simulations) performs no better than SMIG/MIGP.

GIFT performs poorly, only approaching the best of the other
methods when the estimated number of components is larger than
the true number, and when the internal dimensionality is double that
of the default.

Interactions between outlier subject and estimated dimensionality

Fig. 4 shows the effects of adding in an outlier subject, which has a
controllable, typically large, difference in its underlying non-artefact
spatial maps, compared with the primary group of subjects. We also
tested larger numbers of subjects in the second (“outlier”) group, but
the results from those were simply intermediate between the results
reported here and the cases with no outliers, so we do not report further
on those here. In these tests no subject-specific artefacts were added.

In the first test, with the outlier being different from the other
subjects by a factor of 0.3 (i.e., “intermediate”), and when estimating
the same number of components as are created for each subject (10),
all methods perform similarly, with slightly improved accuracy of esti-
mation of the outlier subject by MeanProjection. Presumably, in all
cases, the estimated 10 components are driven almost entirely by the
group of 30 homogeneous subjects, and the ~47% accuracy in estimating
the outlier subject’s maps is primarily driven by the extent to which its
maps are similar to the other subjects.

The second test doubles the final estimated dimensionality, which
therefore in theory could allow perfect estimation of both groups of sub-
jects. In this case MeanProjection and GIFT perform poorly. The third
test keeps this doubled final dimensionality, and now raises the
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varying good-component subject-variability & white-noise
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Fig. 2. Results from relatively “high CNR, low variability” datasets (30 subjects, 200 timepoints).

group-difference (the extent to which the outlier subject is different
from the others) to 1 (i.e., totally unrelated). Again, MIGP and iterated
SMIG perform well (as well as TemporalContat) — and MeanProjection
and GIFT perform poorly. It should be noted, though, that most methods
perform well with respect to the homogeneous group of subjects,
which, arguably, is the most important aspect of these results.

Combinations between outlier subjects and subject-specific artefacts

Fig. 5 shows tests combining the effects of subject-specific artefact
components and the presence of an outlier subject. The results are rea-
sonably consistent with being a mixture of effects shown above. MIGP
and iterated SMIG perform well overall — as well as TemporalConcat.
GIFT overall performs poorly, except when estimating an increased
number of components and when the internal dimensionality is double
the default — in such cases, the performance can be greater than with
TemporalConcat. Possibly the reduced performance of GIFT (particular-
ly when compared with its performance in the previous set of tests) is
due to the subject-specific artefact components damaging the within-
subject PCA applied by the GIFT approach.

Very large datasets

Fig. 6 shows tests with much larger datasets, with increased num-
bers of subjects or timepoints, and varying true and estimated
dimensionality.

The first and second tests have 50 (respectively, 200) subjects and
200 timepoints, with true and estimated dimensionality of 70 (a dimen-
sionality that would most likely be too high to estimate robustly for in-
dividual subjects, but hopefully estimable at the group-level). GIFT with
m = 2n, MIGP and iterated SMIG perform well, with a very slight differ-
ence between their best performances; here, the 10-iterations of m =t
SMIG is 1-2% more accurate than the other options, and equal to
TemporalConcat. The reason that here m = t, rather than m = 3n as
in previous tests, is that here 3n > t. Default GIFT and MeanProjection
perform less well than the other methods.

The third test has 30 subjects and 1000 timepoints. The estimated
dimensionality here is lower than the true dimensionality; all methods
perform well except for GIFT.

Subject ordering effects in MIGP

Although there is no bias in overall eigenvector weighting as new
subjects are added into the MIGP calculations, there still might be a
small “ordering effect”, for example, if eigenvectors found to be present
early on (in the incremental estimations) may boost patterns that ran-
domly match these in later datasets. Hence in this evaluation we simulat-
ed two fairly different groups of subjects. In addition to the standard MIGP
analysis (which randomises the order that subjects are processed, and
hence should avoid bias between different subject subgroups caused by
any order effect), we also ran MIGP twice without randomisation. In
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subject-specific artefacts: varying estimated-dimensionality
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Fig. 3. Results showing the effects of adding in subject-specific artefact components, and how the estimated dimensionality interacts with this.

one case (“forwards”), we first fed all subjects from group one into MIGP,
followed by group two; in the other MIGP analysis (“backwards”) we fed
in group two first. We also applied these 3 approaches using 5 iterations
of the full algorithm, with each iteration initialised from the output of
the previous one, rather than by the first subject.

Fig. 7 shows the results from this evaluation. This shows that with-
out order randomisation, some order bias can occur when different
groups of subjects are processed, in group-organised ordering; small
but significant biases can be seen in the results for “forwards” and
“backwards” versions of MIGP, most strongly with respect to the accura-
cy of estimating group 2 in the “forwards” case (where group 1 is
processed first).

With the default MIGP approach of subject order randomisation, and
only a single pass through the entire dataset, accuracy is very close to
full temporal concatenation (which processes all subjects simulta-
neously). Only an additional ~0.1% improvement is obtained by iterating
MIGP 5 times, which in general will not be computationally worthwhile,
particularly given that sub-group variability would not generally be ex-
pected to be as large as was inserted here.

Real data results

Finally, we validated MIGP on a very large real dataset, utilising a
powerful compute cluster having 1.25 TB of RAM to estimate the

group-level PCA both with MIGP and with the “gold-standard” ap-
proach of full temporal concatenation. We used rfMRI datasets from
the first 131 subjects publicly released by the HCP. Each subject's
dataset comprised 4 15-minute runs, totalling 4800 timepoints. The
data had been preprocessed and transformed into the compact
“grayordinate” standard space (Glasser et al., 2013) of approximately
90,000 spatial locations; therefore the entire raw dataset comprises
225 GB (if using a 4-bit float for each datapoint) — nearly half a Terabyte
when using double precision storage.

For this analysis, we set m = 4700, i.e., close to the number of
timepoints obtained by combining the 4 runs from each subject. At
the completion of MIGP, we saved out the top 4500 components.
MIGP took approximately the same amount of time to run than the
gold-standard approach, but it required less than 16 GB of memory.

The primary final comparison was of the 90,000 x 90,000 full “dense
connectome” estimated on the basis of the two approaches. This
showed an accuracy of 99.99% for MIGP against the gold standard. If
the gold-standard analysis was reduced to its top 4500 PCA components
before re-estimating the ground-truth dense connectome, MIGP had an
accuracy (against this) of 100.00%, telling us that the 0.01% error in the
initial comparison was in fact due to the PCA approximation of the
group dataset to the top 4500 components, and not due to MIGP's
approximation to the PCA; this is thus a powerful validation of the over-
all algorithm.
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Fig. 4. Results showing the effects of adding in an outlier subject, which has a controllable, typically large, difference in its underlying non-artefact spatial maps, compared with the primary group of subjects.
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Fig. 5. Results showing tests combining the effects of subject-specific artefact components and the presence of an outlier subject.
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very large datasets
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Fig. 6. Results showing tests with much larger datasets, with increased numbers of subjects or timepoints, and varying true and estimated dimensionality.

Conclusions

We have shown that two simple approaches for estimating group-
level PCA can achieve virtually the same accuracy as full temporal con-
catenation of all subjects’ datasets, for any number of subjects, or size of
data, without needing large amounts of RAM. Indeed, the RAM require-
ments do not increase at all with increasing numbers of subjects. Addi-
tionally, in the majority of simulation scenarios, the methods (along
with the temporal concatenation approach that they approximate) pro-
vide more accurate results than the other methods tested.

We have not commented much on the computational time required
for the different methods. This is partly because this work relates to
group-level (study-level) analyses, that by definition would not be car-
ried out very frequently. It is also because most of these methods are

parallelisable across multiple CPUs with high efficiency. In the case
of MIGP, subsets of a dataset can be processed in parallel (with
randomisation of subject membership across subsets), and then the
multiple outputs combined with exactly the same approach, treating
each subset's output as if it were an individual subject's dataset
(which s straightforward given that MIGP retains the scaling/amplitude
information). Such an approach would therefore be almost identical to
the fully serial MIGP analysis.

MIGP and SMIG have similar memory requirements and similar
accuracy. They differ in overall computation time in a way that will be
data and computer/network dependent. With respect to computation
(CPU) time, SMIG is generally faster than MIGP (to an extent that
depends primarily on how many SMIG iterations are applied). However,
whereas MIGP only requires each dataset to be read from file once,
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SMIG requires that every dataset be read from file a 4+ 1 times (i.e. one
more time than the number of iterations, because the approach needs
to start by forming the average data), if the entire set of raw datasets
cannot be held in memory; hence the additional file read time may in
some circumstances outweigh the gain in compute time.

Because MIGP uses a one-pass incremental approach to estimate the
group-average spatial eigenvectors, it is trivial to add new subjects into
a study-level PCA estimation, as they become available (e.g., in the case
of HCP, as more subjects' datasets are acquired and publicly released),
without needing to restart the processing from scratch. Also, MIGP is
able to utilise datasets from different subjects having different numbers
of timepoints.

MIGP is implemented in FSL's MELODIC tool, and simple MATLAB
code for MIGP and SMIG is given in the Appendices A and B. 4500-
component group-level PCA outputs from the first 500 HCP subjects
have been computed with MIGP and are publicly available at the
humanconnectome.org/data website, along with ICA-based parcellations
(at a range of ICA dimensionalities), and “dense connectomes”
(grayordinate x grayordinate correlation matrices), both derived from
the MIGP group-level PCA decompositions.
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Appendix A. MIGP MATLAB code

Below, Y{i} is the t x v matrix for subject i, and should already
have been processed to remove the mean of every column
(timeseries), and, in the case of MELODIC, will also by default have
had the (subject-specific) temporal variance normalisation proce-
dure applied (Beckmann and Smith, 2004). The final output dimen-
sionality is n.

r=randperm(s); % used to randomise the order subjects are processed in
W=Y{r(1)}; % copy first (randomly chosen) subject Y (t x v matrix) into W
2: % main loop over all other subjects
tenate W with the next subject
iently get the top "temporal" eigenvectors of W ...
nd multiply these into W to get weighted spatial eigenvectors

a0

output just the required number of strongest spatial eigenvectors

To parallelise (across different sub-groups of subjects), simply
estimate W, for each sub-group, concatenate these, and apply the
SVD. W can of course be re-loaded later in order to add further subjects
into the calculation. Different subjects' datasets can contain different
numbers of timepoints.

Appendix B. SMIG MATLAB code

The internal dimensionality is m, which would normally be set
somewhere between n and t. The average data matrix (across all sub-
jects) is meanY. The function nets_svds (from the FSLNets package) is
a simple wrapper around the MATLAB function eigs, that ensures that
the shorter dimension (regardless of data matrix orientation) is used
to calculate the working covariance matrix, and estimating just the
top m components. Here, 1e —3 is a small constant needed in case R is
near-singular; in general, it should be set to auto-scale properly with
R, e.g., as 1e—6 = norm(R).

if m<t
[T, ",V]=nets_svds (mean¥,m) ;
else

W=mean¥;
end

w=v’;

for iter=l:a
T=zeros (m,v);
R=zeros (m);
for i=l:s
Mi = ¥Y{i} » W;
T =T+ Mi'% Y{i};
R =R+ Mi" % Mi;
end

W=real {inv(sgrtm(R+le-3+*eye(m))})  T;
end

[~,”,Wl=nets_svds (W,n);
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