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It remains unknown whether migraine headache has a progressive component in its

pathophysiology. Quantitative MRI may provide valuable insight into abnormal changes

in the migraine interictum and assist in identifying disrupted brain networks. We carried

out a data-driven study of structural integrity and functional connectivity of the resting

brain in migraine without aura. MRI scanning was performed in 36 patients suffering

from episodic migraine without aura and 33 age-matched healthy subjects. Voxel-wise

analysis of regional brain volume was performed by registration of the T1-weighted

MRI scans into a common study brain template using the tensor-based morphometry

(TBM) method. Changes in functional synchronicity of the brain networks were assessed

using probabilistic independent component analysis (ICA). TBM revealed that migraine

is associated with reduced volume of the medial prefrontal cortex (mPFC). Among

375 functional brain networks, resting-state connectivity was decreased between two

components spanning the visual cortex, posterior insula, and parietal somatosensory

cortex. Our study reveals structural and functional alterations of the brain in the migraine

interictum that may stem from underlying disease risk factors and the “silent” aura

phenomenon. Longitudinal studies will be needed to investigate whether interictal brain

changes are progressive and associated with clinical disease trajectories.

Keywords: functional connectivity, tensor-basedmorphometry, default-mode network, visual cortex, independent

component analysis

INTRODUCTION

The current state of clinical practice in migraine is focused on reducing disease morbidity and
frequency of headache attacks. However, there is ongoing debate regarding the potential long-term
impacts of migraine on brain integrity and various domains of cognitive function, raising the
critical question of whether migraine is accompanied by some progressive neuropathology with
irreversible outcomes (1, 2).
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From a genomics perspective, migraine is a multifactorial
disease with a highly polygenic background (3). However, there
are a number of rare migraine-resembling disorders caused by
disruption of single genes, such as CADASIL, MELAS, and
subtypes of familial hemiplegic migraine; in these disorders,
recurrent headache is accompanied by serious complications
including arteriopathy, subcortical infarcts, and brain atrophy
(4). This line of evidence may indicate that chronic headache and
progressive neuropathology sometimes share some close genetic
and biological underpinnings. Of note, migraine headache, as
a disease with a significant heritable component (5) (44–52%),
is also associated with an increased risk of stroke in patients
with aura (6) and a higher prevalence of stroke-like white-
matter lesions in areas supplied by the posterior circulation (7).
Nevertheless, association of migraine without aura, the most
prevalent subtype of migraine, with subclinical brain pathology
remains elusive.

Quantitative neuroimaging has revealed that migraine is
associated with a palette of neurobiological events in the course
of ictal attacks as well as in the prodromal and postictal
phases (8). Among these, persistent brain changes that extend
to the interictal intervals may be more informative on a
potentially progressive and irreversible component of migraine.
In this regard, quantitative brain morphometry provides useful
information at the mesoscale resolution of MRI and indirectly
reflects the loss of neural circuits and synaptic structures in
various diseases. Structural brain morphometry also reveals
regional reinforcement of neural pathways, which sometimes
results in an increase in regional brain volume or cortical
thickness (9). A number of voxel-based morphometry studies
suggest that migraine is associated with a reduced volume
of the insula, anterior cingulate, frontal cortex, and parietal
operculum (10–13). Thickening of cortical areas engaged in
visual and somatosensory processing as well as increased volume
of periaqueductal gray matter has also been observed in migraine
patients (14–16). While the relevance of such volumetric brain
changes to migraine pathophysiology remains unknown, pain
circuit dysmodulation has been the prevailing explanation (16).

Positron-emission tomography and functional MRI (fMRI)
have revealed marked hypoperfusion of the occipital cortex as
a heralding event in the cortical spreading depression (CSD)
phenomenon in migraine attacks (17). fMRI has also identified
spatiotemporal progression of the CSD in the human brain (18).
In addition to these changes, which are temporally coupled to
headache attacks, more recently, functional connectivity among
several brain networks has been investigated using resting-
state fMRI in the headache-free states, showing that intrinsic
synchronicity of a number of brain regions is altered in the
absence of headache symptoms, including the frontoparietal,
anterior cingulate, and visual cortex (19–22). Causal relevance
of brain connectivity changes to headache is unknown, and
these findings may highlight some persistent brain traits that
predispose to migraine, or rather, reflect a gradually progressive
component of chronic ictal attacks.

It is noteworthy that the majority of the fMRI studies of
migraine have focused on assessment of hypothesis-based brain
networks, such as the executive (19, 21), visual (22), limbic
(20), periaqueductal gray (23), salience (24), and default-mode

networks (DMNs) (25–27). Probably due to disease heterogeneity
and methodological differences, fMRI studies have provided
conflicting results so far, with some contradictory reports of a lack
of connectivity changes in migraine (27, 28). To our knowledge,
a hypothesis-free whole-brain approach has not yet been used to
evaluate changes in synchronicity of all resting brain networks in
patients with migraine without aura.

In this study, we aimed to perform an exploratory assessment
of brain networks in the interictal intervals of patients with
migraine without aura. Using probabilistic ICA analysis, we
decomposed a total of 375 intrinsic brain networks and
investigated their altered connectivity in the resting state.
We further assessed volumetric brain differences at voxel
resolution using tensor-based morphometry (TBM). Our results
show that migraine without aura is associated with abnormal
changes in the functional connectivity of the visual cortex,
parietal somatosensory cortex, and DMN, circuits that have
been previously implicated in the pathophysiology of CSD and
chronic pain. The observed interictal changes may stem from
migraine risk factors or reflect a brain response to recurrent
headache episodes.

MATERIALS AND METHODS

Participants
This study was carried out in accordance with the
recommendations and approval by the research ethics committee
of the Tehran University of Medical Sciences, no. 91-01-54-
17491-55005, with written informed consent from all subjects
in accordance with the Declaration of Helsinki. Patients were
enrolled from a headache clinic in Tehran (2012–2015) after
providing written informed consent, including 36 right-handed
female patients with migraine without aura with no history of
other chronic diseases, substance abuse, or medication overuse
headache. The diagnosis of migraine without aura was made
by the senior neurologist investigator (MT) according to the
ICHD-3 beta criteria. Mean age (±standard deviation) of the
patient group was 36.6± 8.8 years (range: 20–54 years). Subjects
did not receive any prophylaxis treatment for at least 6 months
before enrolment in this study. Acute therapy medications
used by the patient group are provided in Table 1. Twenty-six
patients (72%) reported a positive family history of migraine
in their immediate relatives. An age-matched control group of
right-handed healthy female subjects (n = 33), who did not
report a history of chronic medical condition or migraine in their
immediate relatives, was also enrolled. The level of education
was not different between the healthy and migraine groups.
Clinical characteristics of the study population are provided
in Table 2.

Structural MRI Image Acquisition
Subjects underwent an MRI session using a 3.0-Tesla scanner
(Trio Tim, Siemens, Erlangen, Germany) and a 12-channel
receive-only head coil. Patients had been in a headache-free
state at least 24 h before the time of the scan. Several imaging
modalities were collected, including structural T1-weighted MRI
and resting-state fMRI. A fiducial marker (vitamin E capsule) was
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TABLE 1 | Migraine acute therapy medications used by the study population.

Medication Subjects

Sumatriptan or rizatriptan 9

Ergotamine 2

Ibuprofen 18

Acetaminophen 14

Naproxen 4

Indomethacin 3

Diclofenac 2

Celecoxib 2

Mefenamic acid 1

Aspirin 1

Alternative/herbal 2

Twenty two patients (61%) reported consumption of more than one analgesic agent.

TABLE 2 | Clinical characteristics of the study population.

Migraine Healthy

Subject count (female) 36 (36) 33 (33)

Age* (years) 36.6 ± 8.8 (range: 21–54) 36.4 ± 9.4 (range: 20–54)

Headache frequency

(episodes/month)

5.4 ± 5.6 –

Pain intensity (1–10) 8.2 ± 1.6 –

Disease duration (years) 12.1 ± 8.6 –

Family history of chronic

headache

26 subjects (72%) –

*Values reflect average ± standard deviation.

attached to the right temple to ensure correctness of the left/right
axis in the volumes.

A 6-min three-dimensional magnetization-prepared rapid
acquisition gradient echo (MPRAGE) sequence was used to
record brain structure at the isotropic resolution of 1mm with
the following parameters: repetition time (TR): 2,530ms, echo
time (TE): 3.5ms, inversion time (TI): 1,100ms, flip angle: 7◦,
and GRAPPA with an acceleration factor of 2.

Structural MRI Image Preprocessing and
Tensor-Based Morphometry
MRI volumes were corrected for magnetic field bias using the
N4 algorithm (29). Thereafter, all 69 T1-weighted volumes of
the study population were recursively registered to construct a
minimum-deformation template (Figure 1) by the diffeomorphic
registration method SyN, part of the ANTS tool kit (30).
The non-linear deformation field of each subject’s brain was
converted to Jacobian determinant maps encoding regional
tissue shrinkage or expansion in relation to the average
template (31). Thereafter, voxel-wise morphometry maps were
compared between the migraine and healthy groups by the non-
parametric linear model Randomize using 10,000 permutations
(32), controlling for subject age. Voxel-wise statistics were

corrected for multiple comparisons via threshold-free cluster
enhancement (33).

fMRI Image Acquisition and Denoising
Resting-state fMRI volumes were collected at the spatial
resolution of 3.4 × 3.4 × 3.0 mm3 (matrix 64 × 64 × 40),
20% interslice gap, and an interleaved slice acquisition scheme. A
total of 250 functional volumes were acquired with a repetition
time (TR) of 2,570ms, echo time (TE) of 33ms, flip angle of
80◦, and scan duration of 11min. Three pairs of spin-echo
echo-planar imaging volumes were also collected with opposing
phase-encoding directions (A→ P/P→ A) for correcting image
distortion using FSL topup (34). Subjects were asked to keep
their eyes open and not to fall asleep or think about anything
in particular. The effect of subject movement was corrected
by linear alignment of volumes using mcflirt, and slice-timing
correction was then applied using FSL slicetimer. The first
six fMRI volumes were omitted to insure stabilization of the
longitudinal magnetization, and functional volumes were then
high-pass filtered (σ = 50 s) to eliminate low-frequency drifts
of the signal. The preprocessed fMRI data were subsequently
decomposed into independent spatial components by themelodic
ICA algorithm to separate BOLD signals of neural origin from
noise components (35). An automated denoising model was
trained by manual labeling of components in 20 subjects (10
migraine patients and 10 healthy participants), and the trained
model was used to autoclassify noise components of the rest of
the study population (36). Time courses of noise components
as well as 24 head motion regressors were then partialled
out from the data using the non-aggressive approach (37).
Finally, functional volumes were brought into the common brain
template space by concatenating the subject’s fMRI→ T1 linear
transformation matrix with the T1→ template SyN deformation
field (30).

Independent Component Analysis
Decomposition of Intrinsic Brain Networks
The registered fMRI images of the whole study population
were decomposed into spatially independent sources by
FSL melodic, which linearly separated the data into a preset
number of components. The independent component
analysis (ICA) spatial maps were then regressed against
each subject’s denoised functional data to obtain component
time courses (38). MELODIC was run four times, decomposing
the brain’s functional activity into 25, 50, 100, and 200
networks providing different levels of detail. Due to the
large memory footprint of the input matrix (202,947 voxels
× 16,592 frames), the –migp option was used in group
ICA (39).

Statistical Analysis of Functional
Connectivity
To evaluate the strength of functional coupling between brain
networks, Pearson’s correlation coefficient of each of the two
component time courses was calculated and transformed to
the Gaussian distribution by Fisher’s r-to-z transformation,
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FIGURE 1 | Study brain template. Subjects’ T1-weighted MRI volumes (n = 69) were non-linearly registered to a common space, and a minimum-deformation

template that represented an “average” study brain geometry was constructed. Non-linear warps transforming each subject’s native brain geometry to the common

study template were calculated, converted to Jacobian determinant fields, and compared across study groups by tensor-based morphometry (TBM).

FIGURE 2 | Regional brain volume loss in migraine. (Top) Voxels passing correction for multiple comparisons across the brain (TFCE) at corrected p < 0.05.

(Bottom) A seed region was placed at the volume-loss region. Resting activity of this region was correlated with the default-mode network in the study population.

The connectivity map is thresholded at z-score >35.

TABLE 3 | Standard MNI coordinates of brain volume deficits in migraine without

aura.

#cluster Cluster vol. mm3

(TFCE)

Top p X Y Z

mPFC 17,164 (265) 2.4 × 10−5 8 51 8

Lt. middle frontal gyrus 12,836 (0) 2.4 × 10−5
−34 18 28

Rt. middle frontal gyrus 3,193 (0) 2.4 × 10−5 40 29 27

MNI, Montreal Neurological Institute; TFCE, threshold-free cluster enhancement; mPFC,

medial prefrontal cortex.

yielding the node-to-node network edge strength values. Subject-
wise edge strengths were then compared between the migraine
and healthy populations while controlling for the confounding
effect of subject age. Regression p-values were corrected for

multiple comparisons across all studied edges by performing
5,000 random permutations.

RESULTS

Structural MRI
Total brain volume was not significantly different between
migraine patients (1,217 ± 90 ml) and healthy subjects
(1,202 ± 74 ml; p = 0.48). TBM analysis demonstrated
a significantly lower brain volume in the right medial
prefrontal cortex (mPFC) in migraine patients (Figure 2 and
Table 3). No area of increased brain volume was observed
in the patient group. By placing a seed region-of-interest
in the mPFC volume-loss area, we observed its strong
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FIGURE 3 | The default-mode network of the study population. Red-yellow: activation (correlation), blue: inhibition (anticorrelation).

FIGURE 4 | Resting-state functional connectivity changes in migraine without aura. Two components demonstrated significantly reduced functional coupling at p =

0.002, including the occipital cortex (green) and parietal-posterior insular cortex (red-yellow).

functional connectivity with the rest of the DMN in the study
population (Figure 2).

Resting-State fMRI
There were no systematic differences in head movement
parameters between the migraine and healthy groups. One
subject’s functional data were incompletely acquired due to an
operator issue and omitted from the analysis. ICA revealed well-
known resting brain networks in the study population, including
the DMN (Figure 3).

Comparing all network edge strengths between migraine
patients and healthy subjects revealed statistically significant
reduction of functional connectivity between two components
spanning the occipital, postcentral, and precentral gyri;
frontoparietal operculum; and posterior insular cortex that

passed multiple comparisons correction (p = 6.4 × 10−5;
permuted p= 0.002; Figure 4).

Increasing ICA dimensionality verified disruption of the
same resting brain networks in higher spatial details with
a similar direction of effects, although p-values did not
pass the stringent multiple comparisons correction of larger
connectivity matrices (Figures 5A–D). Importantly, of the
total of 228 suggestively modulated network edges at p < 0.05
(uncorrected for the total number of studied edges), 98.2% (n
= 224) had an effect direction reflecting reduced functional
connectivity in migraine patients (Figure 5E). By clustering
all of these resting brain networks, four main clusters of
connectivity reduction were observed in migraine (Figure 5F),
including the DMN (cluster A); bilateral intraparietal sulci
(cluster B); occipital visual network (cluster C); and superior
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FIGURE 5 | Whole-brain functional connectivity differences. (A–D) Node-to-node correlation matrices of independent component analysis (ICA) time course are

shown at various dimensions. Network edges with suggestive connectivity differences in the migraine vs. healthy group (p < 10−4) are marked by asterisks. These

disease-related edges are pooled in a single cross-correlation matrix for the purpose of visualization (E, top triangle). Spatially localized clusters of connectivity

disruption are observed in migraine patients (F). The sign of parameter estimates in regression models demonstrates generalized reduction of connectivity strength in

migraine (E, bottom triangle; red-yellow: negative; blue: positive).
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frontoparietal, insular, opercular, and thalamic network
(cluster D).

Neuroimaging Traits and the Clinical
Measures of Migraine
No significant correlation was observed between structural
and fMRI changes and measures of migraine severity
including disease duration, headache intensity, and
frequency. Power analysis in terms of required sample
sizes to observe a significant correlation was performed
(Supplementary Material). Disease duration showed
the largest effect size, and structural MRI demonstrated
higher power in tracking effects of this clinical measure
than fMRI. The minimum sample size for observing the
strongest correlation with the power of 80% was equal to n =

109 subjects.

DISCUSSION

Activity of the resting brain is a rich source of information
for understanding its function in health and malfunction in
disease (40). Although the structural deficits ofmPFC inmigraine
may be an isolated phenomenon, we speculate that this finding
may be related to the observed functional dysconnectivity
of the DMN in which the mPFC actively engages. Previous
evidence reveals that mPFC synchronicity within the DMN
is associated with pain rumination (41). Lower connectivity
of the mPFC with the rest of the DMN has also been
observed in other chronic pain disorders, including osteoarthritis
and low back pain (42, 43). While heterogeneous, results of
previous structural MRI studies indicate that decreased volume
of the frontal cortex is the most consistent observation in
migraine (10, 12, 15, 44–48), with one study reporting lower
volume of mPFC in patients with migraine without aura,
similar to our work (13). At the synaptic level, recurrent
painful stimuli lead to inhibition of the pyramidal neurons in
mPFC through a GABAergic mechanism (49), and the same
pathway may underpin the plasticity of mPFC in chronic
pain conditions.

We observed lower connectivity of the visual cortex with the
default-mode, frontoparietal, and posterior insular networks as
the main hub of functional dysconnectivity in migraine. The
interictal changes we observed in migraine may stem from
abnormal neurodevelopmental pathways, underpinning cortical
hyperexcitability (50). The visual cortex is the main site for
initiation of oligemia and CSD that herald an ictal attack (17).
Evidence supports hyperexcitability of the visual cortex in the
interictal state of patients with migraine with and without aura
(51). Structural alterations have also been observed in the V3A
visual cortex of patients with migraine with and without aura
(14), and our work adds another line of evidence to this “silent”
aura phenomenon in the patients without aura. However, caution
must be taken in drawing conclusions, since observation of
structural changes in the visual cortex seems to depend on
methodology (52).

The DMN has been previously implicated in the perception
and processing of painful stimuli (42, 53). Reduced connectivity
of the DMN has been observed in migraine without aura (25, 54),
and specifically, the 0.04–0.08Hz frequency band of this network
shows decreased activity (55). The posterior insula, which
demonstrated decreased connectivity to the visual cortex in our
work, is the most specific region for the perception of pain in
humans and acts as the homolog of the primate nociception
center (56, 57). It is noteworthy that structural changes were
observed in the anterior component of the DMN in the mPFC
region, while functional dysconnectivity was observed in its
posterior connections to the visual cortex and the insular
nociception center. More research is needed to investigate a
potential role of the DMN as an integral part of the pain circuit in
migraine patients. The DMN may transfer abnormal headache-
triggering neural activities from the visual cortex to downstream
areas engaged in perception and cognitive processing
of pain.

LIMITATIONS

Due to a cross-sectional design, making any causal inference
is difficult based on our findings. We did not observe any
significant correlation between the MRI changes and various
measures of disease severity such as pain intensity, attack
frequency, and disease duration. This lack of correlation has
been previously encountered (21, 22) and may indicate the need
for higher statistical power with larger sample sizes to obtain
clinically relevant neuroimaging biomarkers for migraine. Our
findings run contrary to two reports of increased (27) and
unaltered (28) functional connectivity in migraine using a dual
regression approach but are in line with the reduced brain
connectivity in migraine observed by a node-to-node correlation
approach, which is more similar to our method (26). Given the
heterogeneity of findings, there is a need for studies with larger
sample sizes.

CONCLUSIONS

In summary, we report abnormalities in the interictal state of
the migraineur brain as reflected in the reorganization of the
visual, somatosensory, insular, and DMNs. Until larger studies
with longitudinal designs are performed, the relevance of these
neuroimaging changes to underlying disease mechanisms will
remain elusive.
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