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Abstract
Purpose: Differences in site, device, and/or settings may cause large variations in the intensity
profile of dopamine transporter (DAT) single-photon emission computed tomography (SPECT)
images. However, the current standard to evaluate these images, the striatal binding ratio (SBR),
does not efficiently account for this heterogeneity and the assessment can be unequivalent across
distinct acquisition pipelines. In this work, we present a voxel-based automated approach to intensity
normalize such type of data that improves on cross-session interpretation.
Procedures: The normalization method consists of a reparametrization of the voxel values based
on the cumulative density function (CDF) of a Gamma distribution modeling the specific region
intensity. The harmonization ability was tested in 1342 SPECT images from the PPMI repository,
acquired with 7 distinct gamma camera models and at 24 different sites. We compared the
striatal quantification across distinct cameras for raw intensities, SBR values, and after applying
the Gamma CDF (GDCF) harmonization. As a proof-of-concept, we evaluated the impact of
GCDF normalization in a classification task between controls and Parkinson disease patients.
Results: Raw striatal intensities and SBR values presented significant differences across distinct
camera models. We demonstrate that GCDF normalization efficiently alleviated these differ-
ences in striatal quantification and with values constrained to a fixed interval [0, 1]. Also, our
method allowed a fully automated image assessment that provided maximal classification ability,
given by an area under the curve (AUC) of AUC = 0.94 when used mean regional variables and
AUC = 0.98 when used voxel-based variables.
Conclusion: The GCDF normalization method is useful to standardize the intensity of DAT
SPECT images in an automated fashion and enables the development of unbiased algorithms
using multicenter datasets. This method may constitute a key pre-processing step in the
analysis of this type of images.
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Introduction
The imaging of the dopamine transporter (DAT) with
nuclear medicine techniques, such as single-photon emission
computed tomography (SPECT) or positron emission to-
mography (PET), is a very useful and widespread tool for
the diagnosis of Parkinson’s disease (PD) and other
neurodegenerative parkinsonisms [1]. In these diseases,
there is a progressive degeneration of the dopaminergic
neurons in the nigrostriatal pathway, which projects from the
substantia nigra to the striatum. DATs are located at the
presynaptic nerve terminals and are responsible for reuptake
of dopamine in the synapses of these neurons to the striatum.
Hence, DAT imaging allows for in vivo visualization of the
state of these projections and thus determining the presence
of neuronal degeneration [2]. DATs can be imaged with
molecular binding agents such as the cocaine derivative I-
123 labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluo-
ropropyl) nortropane ([123I]FP-CIT). Binding of this mole-
cule in the brain is stable for 3–6 h after its administration
and best imaged 3–4 h post-injection, which makes it ideal
for clinical use. Its use was approved by the European
Medicines Agency in 2000 and by the Food and Drug
Administration in the USA in January 2011 [3].

The current standard method of assessment consists of the
quantification of tracer binding in the main striatal regions of
interest (ROI), namely putamen and caudate, through the
calculation of the striatal binding ratio (SBR). In this
calculation, the tracer binding in displaceable regions (i.e.,
the striatum) is normalized to the tracer binding in non-
displaceable regions. The non-displaceable region refers to a
region where the DATs are poorly expressed, commonly the
occipital cortex or the cerebellum [4]. The SBR of a
particular ROI is then formulated as

SBRROI ¼ CROI−CNDB

CNDB

where CROI is the mean count per voxel in the ROI (whole
striatum, putamen, or caudate) and CNDB represents the
mean count per voxel in the non-displaceable region.
Unfortunately, the SBR does not efficiently harmonize the
large variability in intensity that DAT SPECT images
present. One of the largest sources for this variability, apart
from the subject-related physiological factors, is due to the
imaging system, comprised of the acquisition hardware and
the image reconstruction software [5, 6]. Indeed, sites with
distinct gamma cameras but comparable subjects produced
significantly different SBR values in the European

multicenter database of healthy controls for [123I]FP-CIT
SPECT (ENC-DAT) [5]. This discrepancy is partly due to
the fact that this ROI-based assessment makes assumptions
about the intensity distribution of the image that are not
valid, since the ratio between displaceable and non-
displaceable ROIs may largely differ across different
acquisition set-ups. This bias has negative consequences in
the analysis of these images, including (i) the limitation to
pool and compare images from multiple sites, (ii) the
generation of non-comparable estimates in machine learning
algorithms and a resulting poor generalization, and (iii) lack
of reproducibility of single-site findings. There have been
recent efforts to reduce this variability in ENC-DAT dataset
by revisiting the reconstruction algorithm [7]. However, this
approach is far from being a straightforward step since it
requires dealing with detailed camera-specific factors such
as correction of scatter and septal penetration for image
reconstruction, which may turn the normalization into a
cumbersome process.

In this work, we present a normalization method that
relies on the harmonization of the intensity histogram of the
reconstructed image. We have obtained exceptional harmo-
nization metrics by only making use of basic information
about the acquisition, such as site and gamma camera model,
which goes in favor of practicability. More specifically, our
method consists of a reparametrization of the voxel values
according a mixture model of two Gamma distributions
fitting a normative image histogram. Such reparametrization
is based on the cumulative density function of the Gamma
component modeling the specific uptake so that the new
feature space is constrained to the interval [0, 1].

To test our method, we used over 1000 images obtained
from the Parkinson’s Progression Markers Initiative (PPMI)
repository and which were acquired at multiple sites. We
demonstrate that our normalization procedure (i) equalizes
the striatal DAT quantification across distinct SPECT
cameras and (ii) improves the performance of algorithms
developed with images acquired at multiple sites. The
application of our method allows to pooling and comparing
images from different sites and studies. This harmonization
step is crucial to guarantee the reproducibility of findings
and the generalization of the algorithms using this type of
scans.

Material and Methods
Dataset

In this work, we made use of DAT SPECT images obtained
from the Parkinson’s Progression Markers Initiative (PPMI)
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database (www.ppmi-info.org/data). For up-to-date informa-
tion on the study, visit www.ppmi-info.org. PPMI—a
public-private partnership—is funded by the Michael J.
Fox Foundation for Parkinson’s Research and funding
partners (www.ppmi-info.org/fundingpartners). This study
involves more than 30 clinical sites worldwide and the DAT
SPECT is one of the imaging tests that are being collected.
These conditions make this multicenter repository ideal to
reflect the heterogeneity of real world data and thus to test
our method for intensity harmonization. We randomly
selected 1342 DAT SPECT scans from which 210 corre-
sponded to independent healthy controls and 1132 to PD
patients (439 independent subjects with repeated scans over
the course of the disease). The list of PPMI identifiers of the
scans/subjects used in this work is provided in Table S1 in
supplementary material. PPMI repository also contains data
from SWEDDS subjects (scans without evidence for
dopaminergic deficit from patients clinically presumed to
have Parkinson’s disease), but these were not included in
this work. Each participating PPMI site received approval
from an ethical standards committee on human experimen-
tation before study initiation and written informed consent
for research was obtained from all participants in the study.

These scans were performed at 24 different sites and were
acquired with 7 different SPECT camera models from a
variety of manufacturers, including (1) MARCONI 3000XP,
(2) PHILIPS BrightView, (3) SIEMENS Encore2, (4)
SIEMENS IP2, (5) PICKER HERMES Workstation, (6)
GE MILLENNIUM MG, and (7) GE VARICAM. The
details and demographics of the sample, grouped by camera,
are shown in Table 1. All brain images were spatially
normalized to MNI152 standard space using a linear affine
transformation in FSL (http://fsl.fmrib.ox.ac.uk/fsl) [8–10]
and a custom DAT SPECT template (http://www.nitrc.org/
projects/spmtemplates) [11]. The spatially normalized
images were subsequently masked with a whole brain mask
available in FSL to include only gray and white matter areas.

DAT SPECT Intensity Profile

Our intensity normalization procedure is based on the
assumption that the voxel-wise imaging data contain voxels

that belong to two distinct classes: (i) a majority of voxels
that show non-displaceable dopamine uptake and (ii) a
spatially confined region within the image with elevated
levels of uptake. Consequently, as shown in Fig. 1a, the
histogram of DAT SPECT images is characterized by a
positive-valued distribution with two prominent features: (i)
a broad main component with positive mode at low values,
which corresponds to the majority of voxels with non-
displaceable uptake (background intensity) and (ii) a right-
skewed long tail at higher intensity values than the former
and which corresponds to the activation voxels, namely the
specific uptake region.

However, the shape and x-axis offset of this intensity
histogram can largely vary depending upon the scanned subject
and the imaging system. This is due to the fact that the intensity
profile of this type of images heavily depends on a variety of
factors including acquisition hardware and settings, reconstruc-
tion algorithm and physiological-related factors, such as age,
gender, and metabolism [5, 7]. This is illustrated in Fig. 1b
where it is depicted the mean intensity distribution of the raw
images of the healthy controls grouped by camera model. Here,
it can be noticed the large differences in terms of both shape of
the distribution and quantitative offset produced by one of the
major sources of variability, the imaging system. Moreover, as
mentioned before, other acquisition-related factors beyond the
camera (e.g., collimators, reconstruction technique) can largely
contribute to this variability in intensity. This is reflected in the
bulky profile of some distributions, especially in those where
data from many sites were grouped (e.g., SIEMENS Encore2).

Intensity Normalization with Gamma Distributions

We propose to intensity normalize DAT SPECT images by
modeling the intensity profile with a mixture model of
Gamma distributions. The Gamma distribution is a positive-
supported continuous distribution characterized by two
parameters: shape and scale, Θ = {s, r}. These parameters
enable the function to adopt a wide range of forms (Fig. 2a),
and in fact, well-known distributions such as the exponen-
tial, the Gaussian, and chi-square are special cases of the
Gamma. Thus, given the tailed intensity profile of DAT
SPECT images, Gamma distributions appear to be well-

Table 1. Demographics and sample characteristics grouped by gamma camera model and diagnosis. Note: some sites have more than one camera

MARCONI PHILIPS SIEMENS PICKER GE

3000XP BrightView Encore2 IP2 HERMES MILLENIUM VARICAM

Site (N) 1 3 14 6 4 1 2
Controls
N 15 21 90 30 31 14 9
gender (M/F) 9 / 6 15 / 6 60 / 30 15 / 15 23 / 8 10 / 4 6 / 3
age (years) 60 ± 11 62 ± 13 62 ± 10 59 ± 11 61 ± 13 55 ± 13 64 ± 13
PD
N 179 133 494 128 108 61 29
gender (M/F) 128 / 51 65 / 68 309 / 185 97 / 31 68 / 40 44 / 17 20 / 9
age (years) 62 ± 10 68 ± 9 63 ± 10 61 ± 9 63 ± 9 60 ± 11 58 ± 11
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suited to model these image distributions. Specifically, we
propose to model DAT SPECT image data with a mixture
model of two Gamma distributions, one modeling the
background and one modeling the specific uptake. The
strategy consists of three conceptual steps:

1. Obtain a normative distribution using SPECT images
with same/similar acquisition settings.

2. Fit a two-component Gamma mixture model to that
normative distribution.

3. Reparametrize further SPECT images (either healthy or
pathologic) from that particular acquisition set-up using
the mixture model. Each voxel value x will be reparame-
trized based on its cumulative density function (CDF(x))
under the Gamma distribution modeling the specific
region (i.e., the second Gamma). Consequently, all voxel
values will be re-casted into the interval [0, 1].

This procedure is illustrated in Fig. 2b, where the red
dashed line represents the fit of the normative distribution
and the orange area represents the CDF(x) under the
activation component. In this work, we have considered 7

normative models, one per gamma camera model, using the
images of the healthy controls available for each camera
independently. Nevertheless, other alternatives to generate
the normative model may be also valid. Indeed, when
enough samples are available, we encourage the creation of
normative models that are specific for a single acquisition
set-up, e.g., a site, rather than grouping per camera model.
Also, the use of an anthropomorphic phantom or scans from
patients may serve to approximate the normative model
when data from healthy controls are not available.

Mathematical Formulation

Let X ¼ x1;…; xS1 ;…; xSf g represent a set of vectors
corresponding to DAT SPECT images from S subjects
recorded using the same camera model. Consider that the
first S1 subjects are healthy control subjects and the
remaining ones have some pathology (e.g., PD). For each
subject s, the vector xs ¼ xs1;…; xsn

� �
represents the measure-

ments at the n∈ N spatial locations in the brain (voxels).
The proposed method consists of three main steps:

Fig. 1. a Characteristic intensity histogram of a DAT SPECT image. b Mean camera-specific DAT SPECT image histogram for
the healthy controls.

Fig. 2. a Gamma probability density function across different shape and scale parameters. b Modeling of a camera-specific
normative intensity profile by a mixture of two gamma distributions. The green bars represent the mean image histogram, and
the red dashed line the mixture model fit. The inset shows a zoom on the specific uptake region where the black continuous line
shows the gamma distributed component modeling the specific region, and the orange colored area represents the cumulative
density function (CDF) of a voxel x under such gamma component. Each voxel value x in the image will be reparametrized by its
CDF(x) value.
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1. Obtain a normative distribution using SPECT images
with same/similar acquisition settings. This step involves
a subject-wise scaling followed by the selection of a set of
images:

a. Subject-wise scaling with respect to the mode: ~xsj ¼
xsj
Ms

;
j ∈ 1;…;Nf g; s∈ 1;…; Sf g, where Ms denotes the mode of
the subjects’ intensity histogram.
b. Concatenate scaled images of a specific normative model:
x ¼ ~x1;…;~xS1ð Þ which corresponds to the healthy subjects
of a given camera model.

2. Learn the parameters of a normative mixture model of
two Gamma components of the form:

p xjπ;Θð Þ ¼ ∏
NS1

n¼1
∑
2

k¼1
πkGk xn;Θkð Þ

where N is the number of voxels and S1 is the number of
subjects selected for the normative distribution, k indexes the
two mixture components, Gk expresses the k-th Gamma
distribution, Θk = {sk, rk} represents Gamma shape and scale
parameters, and πk are the mixing proportions. We used a
Variational Bayesian approach to learn the model parameters
[12].

3. Substitute each scaled voxel value (1a) by its CDF (area)
under the Gamma distribution modeling the specific
region (k = 2):

CDF ~x j
s

� �
¼ 1

rs22 Γ s2ð Þ ∫
~x j

s

0 ts2−1exp
−t
r2

� �
dt

where Γ represents the Gamma function [12], s and j the
indexes of subject and brain location respectively, and Θ2 =
{s2, r2} represents Gamma parameters of the component
modeling the specific region.

We will further denote this reparametrization as the Gamma
CDF (GCDF) intensity normalization. Noteworthy, in step 1a,
we used the mode to subject-wise scale the images. We found
the mode a convenient metric since it is data-driven, avoids
definitions of ROIs, and provides a reliable mapping of each
subject distribution to a distribution with mode one that allows
an easy, principled and robust initialization for the mixture
model fit. However, we believe that, given the flexibility of the
mixture model to learn the scaled data, other scaling metrics
(e.g., non-displaceable binding, SBR) may be also valid.

Statistical Analyses

In order to investigate the harmonization ability of our newly
proposed method, we compared across cameras the intensity

values of putamen and caudate after harmonization with
GCDF. As a reference, we evaluated the differences, also
across cameras, of the putamen and caudate raw intensity
values and the SBR values available on PPMI website.
Despite striatum quantitative data of both healthy controls
and PD are available, we only made comparisons in the
control group, as disease severity may largely confound
the striatal uptake differences in PD. We used ANOVA
and Tukey post hoc analyses and the significance threshold
was set to 0.007 (0.05/7) according to Bonferroni
correction.

Then, as a proof-of-concept example, we evaluate the
performance of a binary classifier based on logistic
regression to distinguish between healthy controls and PD
after GCDF normalization when images from multiple sites
were pooled together. As a reference, previous single-center
studies have demonstrated that the diagnostic accuracy of
visual expert reading or SBR-based classifiers can be as high
as of 95 % [1, 4]. We evaluated a low dimensional classifier
using striatal ROI variables (bilateral putamen and caudate)
and also a higher dimensional one using all striatal voxels; in
both cases we used a logistic regression classifier and
tenfold cross-validation for evaluation. Feature selection in
the voxel-based regression was performed by L1 regulariza-
tion. We also calculated, as a reference for the ROI- and
voxel-based approaches, the performance of the classifiers
using the SBR and the voxel raw intensities, respectively.
The mean area under curve (AUC) of the 10 classifiers
obtained from cross-validation was used as a measure of
classification performance. The striatum and its subregions
were based on a manually delineated template (4622 voxels,
https://www.nitrc.org/projects/striatalvoimap).

Results
Figure 3 illustrates an example of a normal DAT SPECT
image before (Fig. 3a) and after (Fig. 3b) the normali-
zation step, where an enhancement of the contrast can be
noticed.

Figure 4 represents the image intensity transformation
over the different steps of the method. First, raw images
showed a very heterogeneous profile (Fig. 4(a)). Then,
subject dependent global scaling brought the intensity
values to similar x-axis range, and the two-component
mixture models were created (Fig. 4(b)). Finally, the CDF
integral over the second component equalized the image
histograms with values between 0 and 1 for all gamma
cameras (Fig. 4(c)).

Regional Quantification of the Striatum

The descriptive values for striatal subregional quantification
(raw intensities, SBR, and GCDF-harmonized values)
across Gamma cameras are shown in Table 2. As expected,
post hoc comparisons revealed significant differences in the
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mean putamen and caudate raw intensity values between
multiple cameras in the sample of healthy controls. We also
observed that many of these differences were still present in
the SBR values quantified by the PPMI sites themselves.
The proposed GCDF-based normalization remarkably pro-
duced homogeneous mean striatal intensity values and
efficiently eliminated all the differences across cameras.

Diagnostic Classifiers Using Multisite Data

The results of the classifiers are summarized in Table 3. We
found that the classifiers using the striatum data after GCDF
normalization provided high diagnostic performance using
images from multiple sites. When all images were GCDF-
harmonized and pooled, the classifier using ROI variables

Fig. 3. Example of a DAT SPECT image a before and b after normalization (GCDF normalized).

Fig. 4. Normalization image histograms transformation for each camera model. (a) Normative distributions given by the images
of all the healthy controls. (b) Scaled data histograms and two-component gamma mixture models fits (red lines). (c) Data
histograms after GCDF normalization.
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achieved AUC = 0.94 and the classifier using voxel data
AUC = 0.98.

In general, the performance of the classifiers trained with
GCDF-harmonized data was superior in the majority of the
16 classifiers as compared with the reference approaches (11
superior, 3 equal, and 2 inferior). Importantly, the perfor-
mance of the GCDF voxel-based classifiers was in general
superior to the performance of the SBR-based classifiers
(AUC 0.98 vs. 0.92), which constitutes a clinically relevant
improvement with respect to current standards. Although
this may come at the expense of an increased complexity
and computation time, our method allows to automating the
analysis and benefiting from the higher spatial dimension of
the voxel feature space. This opens the doors to more
sophisticated analysis methods and challenging applications.

Discussion
In this work, we have introduced a probabilistic normaliza-
tion schema valid for DAT SPECT images based on a
mixture of Gamma distributions. We showed that the
proposed methodology provides a reparametrization of the

voxel data in the interval [0, 1] which effectively equalize
the intensity of images from different cameras and centers.
Furthermore, the proposed normalization step allowed an
automated assessment of the images which provided high
discrimination ability between controls and PD. Our method
is also extensible to other modalities of functional imaging
following the activation/background paradigm such as other
SPECT radioligands or PET.

Data harmonization is a key element in the generation of
reliable and reproducible results in science. In fact, recent
years have seen an increase in alarming signals regarding the
lack of replicability in neuroimaging research [13, 14]. There
are many factors influencing this problem, some subject-
related such as the variability in the collection of phenotypic
data and the inherent heterogeneity in disease, but also the
acquisition hardware and data analysis methods can play a
major role. Unfortunately, this lack of standardization may
generate site- or study-specific neuroimaging findings and
estimates and therefore cause irreproducible and non-
generalizable results. We have observed this phenomenon
in DAT SPECT data from PPMI repository, where the mean
SBR values from distinct cameras presented significant

Table 2. Mean values for striatal variables for healthy controls and PD patients using the raw values, the striatal binding ratio (SBR), and gamma cumulative
density function (GCDF) normalization methods. Superscripts indicate the pairwise post hoc differences between the cameras, which are numerically labeled
as shown in their names

MARCONI PHILIPS SIEMENS PICKER GE

3000XP1 BrightView2 Encore23 IP24 HERMES5 MILLENNIUM6 VARICAM7

Controls N 15 21 90 30 31 14 9
Raw caudate 113 ± 212,4,5,6 33 ± 71,3,7 95 ± 542,4,5,6 62 ± 371,3,7 27 ± 81,3,7 28 ± 51,3,7 142 ± 422,4,5,6

Raw putamen 101 ± 182,4,5,6 29 ± 61,3,7 87 ± 492,4,5,6 56 ± 351,3,7 24 ± 71,3,7 25 ± 41,3,7 130 ± 382,4,5,6

SBR caudate 3.48 ± 0.653,4 2.96 ± 0.50 2.70 ± 0.431,5,7 2.72 ± 0.481,5,7 3.47 ± 0.643,4 3.08 ± 0.65 3.55 ± 0.433,4

SBR putamen 2.59 ± 0.722,3,4 1.99 ± 0.393,5,7 1.91 ± 0.371,5,7 1.93 ± 0.511,5,7 2.52 ± 0.542,3,4 2.25 ± 0.54 2.94 ± 0.342,3,4

GCDF caudate 0.65 ± 0.06 0.65 ± 0.08 0.66 ± 0.08 0.66 ± 0.09 0.64 ± 0.08 0.58 ± 0.08 0.57 ± 0.10
GCDF putamen 0.54 ± 0.05 0.53 ± 0.06 0.55 ± 0.08 0.53 ± 0.08 0.52 ± 0.07 0.48 ± 0.07 0.48 ± 0.06

PD N 179 133 494 128 108 61 29
Raw caudate 93 ± 23 29 ± 12 75 ± 43 58 ± 32 27 ± 11 22 ± 6 108 ± 31
Raw putamen 82 ± 20 26 ± 11 67 ± 38 51 ± 27 23 ± 9 19 ± 4 92 ± 25
SBR caudate 1.99 ± 0.50 1.72 ± 0.50 1.70 ± 0.47 1.66 ± 0.51 2.20 ± 0.59 1.94 ± 0.69 2.63 ± 0.59
SBR putamen 0.76 ± 0.24 0.67 ± 0.27 0.70 ± 0.26 0.69 ± 0.35 0.84 ± 0.38 0.71 ± 0.27 1.16 ± 0.31
GCDF caudate 0.43 ± 0.13 0.42 ± 0.16 0.44 ± 0.15 0.39 ± 0.15 0.43 ± 0.13 0.44 ± 0.16 0.38 ± 0.15
GCDF putamen 0.26 ± 0.09 0.27 ± 0.12 0.28 ± 0.11 0.24 ± 0.11 0.25 ± 0.10 0.27 ± 0.10 0.20 ± 0.08

Post hoc significance determined by p G 0.007

Table 3. Mean (± standard deviation) tenfold classification performance (controls vs. Parkinson) given by the area under the curve (AUC). The classifiers
were built using ROI striatal variables (SBR and after GCDF normalization) and all striatal voxels (raw and after GCDF normalization)

ALL MARCONI PHILIPS SIEMENS PICKER GE

3000XP BrightView Encore2 IP2 HERMES MILLENIUM VARICAM

Sites (N) 24 1 3 14 6 4 1 2
RIO-based SBR 0.92 ± 0.02 0.96 ± 0.01 0.93 ± 0.02 0.93 ± 0.02 0.90 ± 0.02 0.91 ± 0.02 0.93 ± 0.01 1 ± 0.00

GCDF 0.94 ± 0.02 1 ± 0.00 0.94 ± 0.01 0.91 ± 0.03 0.95 ± 0.02 0.96 ± 0.01 0.91 ± 0.02 1 ± 0.00
Voxel-based Raw 0.93 ± 0.02 1 ± 0.00 0.94 ± 0.02 0.91 ± 0.03 0.89 ± 0.01 0.92 ± 0.02 0.96 ± 0.01 0.94 ± 0.01

GCDF 0.98 ± 0.01 1 ± 0.00 0.97 ± 0.01 0.96 ± 0.02 0.97 ± 0.02 1 ± 0.00 0.96 ± 0.01 1 ± 0.00
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differences. These differences can affect the interpretation
and image pooling in multicenter studies, and eventually
bias algorithms trained with images from different acquisi-
tion pipelines.

In our study, we have found that the GCDF normalization
method was effective to homogenize the mean regional
quantification of the striatum across different cameras, thus
outperforming in this task to the classical SBR calculation.
SBR values are commonly in the range [0.5, 4], and in line
with our observations with PPMI data, previous work has
shown that these values can differ substantially across sites
[5, 6]. We have demonstrated that our method restricts the
quantification to values in the interval [0, 1] independently
of the camera and diminishes the intensity differences across
SPECT devices. These new normalized values represent the
CDF under the camera-specific normative Gamma distribu-
tion modeling the specific uptake region. Thanks to this new
reparametrization, mean ROI values (i.e., CDF values in
putamen and caudate) could be unbiasedly compared across
studies and pooled for meta-analysis purposes.

To probe this, we found that the GCDF normalization
allowed deploying diagnostic classifiers that reached maxi-
mal classification accuracies using multisite data (AUC:
SBR = 0.92 vs GCDF = 0.94). The performances using ROI
variables were similar to those using the SBR, which are all
in line with the reported performances in the literature
(AUC = 0.90–0.95), and, reflect no significant performance
gain or loss when using the GCDF normalization in single
camera ROI-based comparisons. Positively, the perform-
ances using voxel variables were higher than the ROI-based
classifiers and therefore above the current state-of-the-art
levels (AUC = 0.95–1), although this could also be related to
the higher complexity of the classifiers. Nevertheless, the
key aspect is the fact that GCDF normalization harmonizes
at the voxel level, thus allowing the use of automated voxel-
based analyses and algorithms. This could maximize
objectivity, practicability, and reproducibility against tradi-
tional specialist-dependent calculations. Indeed, there have
been other recent proposals to intensity normalize DAT
SPECT images with voxel-based methods [15–17]. How-
ever, in these works, the authors only included images from
a single center and the multisite problem was not explicitly
tackled. Moreover, our method has yielded higher classifi-
cation performances [15–17].

Our method is flexible and the strategy to generate the
normative distributions and fit the mixture models can be
adapted to the sample and acquisition characteristics of a
particular multicenter scenario. In this work, we created
normative distributions using data from healthy controls, but
other alternatives may be also valid when SPECT data from
healthy subjects are not available. These alternatives may
include (i) an anthropomorphic phantom, (ii) DAT SPECT
images from patients without evidence of degeneration and
reported as normals (e.g., SWEDDs, non-degenerative
parkinsonisms), or (iii) DAT SPECT images from PD
patients: under the assumption of sparseness and using an

adequate number of images, focal deficits may be compen-
sated across, and the mean image may be a valid
approximation. To illustrate this, we have also calculated
the mixture models using only images from PD patients
(Fig. S1 in Electronic Supplementary Material). Not surpris-
ingly, the mixture models represent slightly shorter tailed
distributions than the ones obtained using the healthy
controls, modeling then lower values, presumably due to a
lower DAT binding. Consequently, the CDF functions of the
activation components are sharper sigmoid-like functions
than the ones obtained when using the healthy controls,
directly translating into a less smooth data transformation.
Although in this suboptimal case the intensity harmonization
was also achieved for all the cameras, classification
performance was slightly lower than the one obtained using
healthy controls (AUC = 0.92). Hence, we would like to be
cautious and still encourage the use of non-degenerated
SPECT data whenever possible; since being able to use
patients for normative modeling would be a very relevant
advantage, further research will be conducted to investigate
possible biases induced by uptake deficits, sample sizes, or
disease severity imbalance across centers that could affect
the quality of the reparametrization.

As final remarks, it is important to point out the potential
bias in our calculations owing to grouping images per camera
model. As briefly mentioned in the methods section, a better
approach would have been to fit models to normative
distributions that are specific of single acquisition settings
(e.g., a site). We decided to grouped them because, given the
absence/scarcity of healthy cases in some sites, further
stratification could have led to poorly reliable normative
distributions. However, we noticed heterogeneous intensity
profiles in images acquired with the same camera model (see
Fig. 1b), probably caused by the variability in scanning
parameters at different sites (e.g., collimators, reconstruction
algorithm technique/version). Indeed, we believe that this may
explain why a pair of SBR-based classifiers outperformed
GCDF classifiers (Siemens Encore2 (14 sites) and GE
Millennium (1 site)). We suspect that this effect could be
related to the choice of suboptimal normative distributions,
probably by the inclusion in the same normative model of data
recorded under significantly different set-ups. The harmoniza-
tion ability of our method relies on the accuracy of the
normative distribution, and in theory, acquisition-specific
models may provide more accurate results and control for the
effect of other acquisition factors. Moreover, we also believe
that biological factors such as age and gender should be also
accounted for. In future work, it would be interesting to
conduct a more thorough characterization of the distinct
sources of variability, including data from poorly harmonized
scenarios, and to evaluate the performance of our method also
under different normative distributions scenarios. The simplic-
ity and flexibility of the proposed data harmonization will
allow in the near future the fusion of large datasets to perform
multivariate modeling approaches that will provide detailed
spatially interpretable information unavailable to date.
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Conclusion
This work presents an objective and automated intensity
normalization method for DAT SPECT images. The method
allows reparametrizing the voxel values of DAT SPECT
images into a new normalized feature space (between 0 and
1) by modeling a normative intensity histogram as a mixture
model of Gamma distributions. We have demonstrated that
this normalization step alleviates the differences in striatal
quantification produced by different gamma cameras and
improves the accuracy of diagnostic algorithms trained with
multicenter data. This harmonization step enables the
reproducibility and generalization of clinical applications
and therefore it may constitute a key pre-processing step in
the analysis of this type of images.
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