74 research outputs found

    Evaluation of Operation IceBridge quick-look snow depth estimates on sea ice

    Get PDF
    We evaluate Operation IceBridge (OIB) ‘quick-look’ (QL) snow depth on sea ice retrievals using in situ measurements taken over immobile first-year ice (FYI) and multi-year ice (MYI) during March of 2014. Good agreement was found over undeformed FYI (-4.5 cm mean bias) with reduced agreement over deformed FYI (-6.6 cm mean bias). Over MYI, the mean bias was -5.7 cm but 54% of retrievals were discarded by the OIB retrieval process as compared to only 10% over FYI. Footprint scale analysis revealed a root mean square error (RMSE) of 6.2 cm over undeformed FYI with RMSE of 10.5 cm and 17.5 cm in the more complex deformed FYI and MYI environments. Correlation analysis was used to demonstrate contrasting retrieval uncertainty associated with spatial aggregation and ice surface roughness

    Ice and snow thickness variability and change in the high Arctic Ocean observed by in-situ measurements

    Get PDF
    In April 2017 we collected unique, extensive in-situ data of sea ice and snow thickness. At ten sampling sites, located under a CryoSat-2 overpass, between Ellesmere Island and 87.1°N mean and modal total ice thicknesses ranged between 2 to 3.4 m and 1.8 to 2.9 m respectively. Coincident snow thicknesses ranged between 0.3 to 0.47 m (mean), and 0.1 to 0.5 m (mode). The profile spanned the complete multiyear ice zone in the Lincoln Sea, into the first-year ice zone further north. Complementary snow thickness measurements near the North Pole showed a mean thickness of 0.31 m. Compared with scarce measurements from other years, multiyear ice was up to 0.75 m thinner than in 2004, but not significantly different from 2011 and 2014. We found excellent agreement with a commonly used snow climatology and with published long-term ice thinning rates. There was reasonable agreement with CryoSat-2 thickness retrieval

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Impact of Geophysical Corrections on Sea-Ice Freeboard Retrieved from Satellite Altimetry

    Get PDF
    Satellite altimetry is the only method to monitor global changes in sea-ice thickness and volume over decades. Such missions (e.g., ERS, Envisat, ICESat, CryoSat-2) are based on the conversion of freeboard into thickness by assuming hydrostatic equilibrium. Freeboard, the height of the ice above the water level, is therefore a crucial parameter. Freeboard is a relative quantity, computed by subtracting the instantaneous sea surface height from the sea-ice surface elevations. Hence, the impact of geophysical range corrections depends on the performance of the interpolation between subsequent leads to retrieve the sea surface height, and the magnitude of the correction. In this study, we investigate this impact by considering CryoSat-2 sea-ice freeboard retrievals in autumn and spring. Our findings show that major parts of the Arctic are not noticeably affected by the corrections. However, we find areas with very low lead density like the multiyear ice north of Canada, and landfast ice zones, where the impact can be substantial. In March 2015, 7.17% and 2.69% of all valid CryoSat-2 freeboard grid cells are affected by the ocean tides and the inverse barometric correction by more than 1 cm. They represent by far the major contributions among the impacts of the individual corrections

    Large-scale ice thickness distribution of first-year sea ice in spring and summer north of Svalbard

    Get PDF
    The large-scale thickness distribution of sea ice was measured during several campaigns in the European Arctic north of Svalbard from 2007 using an airborne electromagnetic induction device. In August 2010 and April–May 2011, this was complemented by extensive on-ice work including measurements of snow thickness and freeboard. Ice thicknesses show a clear difference between the seasons, with thicker ice during spring than in summer. In spring 2011, negative freeboard and flooding were observed as a result of the extensive snow cover. We find that the characteristics of the first-year sea ice allow combining observations from different years. The ice thickness in the marginal ice zone increases with increasing latitude and increasing distance to the ice edge; however, in the inner ice pack from �100km from the ice edge the thickness remains almost constant. Modal ice thickness in spring reaches 2.4m whereas in summer it is 1.0–1.4 m. Our study provides new insight into ice thickness distributions of a typical ice cover consisting of mainly first- and second-year ice, which may become the dominant ice type in the Arctic in the future

    A novel and low cost sea ice mass balance buoy

    Get PDF
    The understanding of sea ice mass balance processes requires continuous monitoring of the seasonal evolution of the ice thickness. While autonomous ice mass balance buoys (IMB buoys) deployed over the past two decades have contributed to our understanding of ice growth and decay processes, deployment has been limited, in part, by the cost of such systems. Routine, basin-wide monitoring of the ice cover is realistically achievable through a network of reliable and affordable autonomous instrumentation. We describe the development of a novel autonomous platform and sensor that replaces the traditional thermistors string for monitoring temperature profiles in the ice and snow using a chain of inexpensive digital temperature chip sensors linked by a single-wire data bus. By incorporating a heating element on each sensor, the instrument is capable of resolving material interfaces (e.g. air-snow and ice-ocean boundaries) even under isothermal conditions. The instrument is small, low-cost and easy to deploy. Field and laboratory tests of the sensor chain demonstrate that the technology can reliably resolve material boundaries to within a few centimetres. The discrimination between different media based on sensor thermal response is weak in some deployments and efforts to optimise the performance continue

    Retrievals of Lake Ice Thickness From Great Slave Lake and Great Bear Lake Using CryoSat-2

    No full text
    Satellite observations have revealed decreases in the duration of the seasonal snow and ice coverage of Great Slave Lake (GSL) and Great Bear Lake (GBL), large freshwater lakes in Northern Canada. However, limited information is available about ice thickness changes. Here, we present and validate a method to retrieve lake ice thickness using the CryoSat-2 (CS2) radar altimeter. These are the first satellite altimeter retrievals of lake ice thickness. Under optimal conditions, the CS2 signal is scattered from both the snow-ice and the ice-water interfaces, with returns from each interface being of sufficient power to be identified in the radar waveform. The distance between the scattering horizons is used to determine the ice thickness, similar to traditional ground penetrating radar measurements. The seasonal evolution of ice thickness of GBL and GSL is compared with in situ measurements, modeled ice thicknesses, and previous studies. The impact of ice and snow properties on signal penetration and the thickness retrieval are examined with synthetic aperture radar imagery. The CS2 ice thickness retrievals are able to observe the seasonal thickening of the lake ice and closely match the in situ measurements over both lakes (R > 0.65 , RMSE <; 0.33 m). Thickness retrievals of thin ice are limited by a minimum waveform peak separation of 2 range bins, approximately 0.26 m in ice. Although not designed for lake ice studies, CS2 and future SAR satellite altimeter missions offer new possibilities to monitor the ice and water levels of climatically sensitive and influential lakes
    • …
    corecore