80 research outputs found

    Inter-comparison and evaluation of Arctic sea ice type products

    Get PDF
    oai:publications.copernicus.org:tc102910Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. However, systematic inter-comparison and analysis for SITY products are lacking. This study analysed eight daily SITY products from five retrieval approaches covering the winters of 1999–2019, including purely radiometer-based (C3S-SITY), scatterometer-based (KNMI-SITY and IFREMER-SITY) and combined ones (OSISAF-SITY and Zhang-SITY). These SITY products were inter-compared against a weekly sea ice age product (i.e. NSIDC-SIA – National Snow and Ice Data Center sea ice age) and evaluated with five synthetic aperture radar (SAR) images. The average Arctic multiyear ice (MYI) extent difference between the SITY products and NSIDC-SIA varies from -1.32×106 to 0.49×106 km2. Among them, KNMI-SITY and Zhang-SITY in the QuikSCAT (QSCAT) period (2002–2009) agree best with NSIDC-SIA and perform the best, with the smallest bias of -0.001×106 km2 in first-year ice (FYI) extent and -0.02×106 km2 in MYI extent. In the Advanced Scatterometer (ASCAT) period (2007–2019), KNMI-SITY tends to overestimate MYI (especially in early winter), whereas Zhang-SITY and IFREMER-SITY tend to underestimate MYI. C3S-SITY performs well in some early winter cases but exhibits large temporal variabilities like OSISAF-SITY. Factors that could impact performances of the SITY products are analysed and summarized. (1) The Ku-band scatterometer generally performs better than the C-band scatterometer for SITY discrimination, while the latter sometimes identifies FYI more accurately, especially when surface scattering dominates the backscatter signature. (2) A simple combination of scatterometer and radiometer data is not always beneficial without further rules of priority. (3) The representativeness of training data and efficiency of classification are crucial for SITY classification. Spatial and temporal variation in characteristic training datasets should be well accounted for in the SITY method. (4) Post-processing corrections play important roles and should be considered with caution.</p

    A new tracking algorithm for sea ice age distribution estimation

    Get PDF
    A new algorithm for estimating sea ice age (SIA) distribution based on the Eulerian advection scheme is presented. The advection scheme accounts for the observed divergence or convergence and freezing or melting of sea ice and predicts consequent generation or loss of new ice. The algorithm uses daily gridded sea ice drift and sea ice concentration products from the Ocean and Sea Ice Satellite Application Facility. The major advantage of the new algorithm is the ability to generate individual ice age fractions in each pixel of the output product or, in other words, to provide a frequency distribution of the ice age allowing to apply mean, median, weighted average or other statistical measures. Comparison with the National Snow and Ice Data Center SIA product revealed several improvements of the new SIA maps and time series. First, the application of the Eulerian scheme provides smooth distribution of the ice age parameters and prevents product undersampling which may occur when a Lagrangian tracking approach is used. Second, utilization of the new sea ice drift product void of artifacts from EUMETSAT OSI SAF resulted in more accurate and reliable spatial distribution of ice age fractions. Third, constraining SIA computations by the observed sea ice concentration expectedly led to considerable reduction of multi-year ice (MYI) fractions. MYI concentration is computed as a sum of all MYI fractions and compares well to the MYI products based on passive and active microwave and SAR products

    FluxEngine: A Flexible Processing System for Calculating Atmosphere–Ocean Carbon Dioxide Gas Fluxes and Climatologies

    Get PDF
    The air–sea flux of greenhouse gases [e.g., carbon dioxide (CO2)] is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher-resolution calcu- lations of these gas fluxes are required if researchers are to fully understand and predict future climate. Satellite Earth observation is able to provide large spatial-scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific com- munity. Fortunately, the development of cloud computing can provide a solution. This paper describes an open-source air–sea CO2 flux processing toolbox called the ‘‘FluxEngine,’’ designed for use on a cloud- computing infrastructure. The toolbox allows users to easily generate global and regional air–sea CO2 flux data from model, in situ, and Earth observation data, and its air–sea gas flux calculation is user configurable. Its current installation on the Nephalae Cloud allows users to easily exploit more than 8 TB of climate-quality Earth observation data for the derivation of gas fluxes. The resultant netCDF data output files contain .20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, which verifies the air–sea CO2 flux calculations; demon- strates the use of the tools for studying global and shelf sea air–sea fluxes; and describes future developments

    Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015

    Get PDF
    Arctic sea ice has displayed significant thinning as well as an increase in drift speed in recent years. Taken together this suggests an associated rise in sea ice deformation rate. A winter and spring expedition to the sea ice covered region north of Svalbard – the Norwegian young sea ICE 2015 expedition (N-ICE2015) - gave an opportunity to deploy extensive buoy arrays and to monitor the deformation of the first- and second-year ice now common in the majority of the Arctic Basin. During the 5-month long expedition, the ice cover underwent several strong deformation events, including a powerful storm in early February that damaged the ice cover irreversibly. The values of total deformation measured during N-ICE2015 exceed previously measured values in the Arctic Basin at similar scales: At 100 km scale, N-ICE2015 values averaged above 0.1, day−1, compared to rates of 0.08 day −1 or less for previous buoy arrays. The exponent of the power law between the deformation length scale and total deformation developed over the season from 0.37 to 0.54 with an abrupt increase immediately after the early February storm, indicating a weakened ice cover with more free drift of the sea ice floes. Our results point to a general increase in deformation associated with the younger and thinner Arctic sea ice and to a potentially destructive role of winter storms

    Salinity from Space Unlocks Satellite-Based Assessment of Ocean Acidification

    Get PDF
    Approximately a quarter of the carbon dioxide (CO2) that we emit into the atmosphere is absorbed by the ocean. This oceanic uptake of CO2 leads to a change in marine carbonate chemistry resulting in a decrease of seawater pH and carbonate ion concentration, a process commonly called “Ocean Acidification”. Salinity data are key for assessing the marine carbonate system, and new space-based salinity measurements will enable the development of novel space-based ocean acidification assess- ment. Recent studies have highlighted the need to develop new in situ technology for monitoring ocean acidification, but the potential capabilities of space-based measurements remain largely untapped. Routine measurements from space can provide quasi-synoptic, reproducible data for investigating processes on global scales; they may also be the most efficient way to monitor the ocean surface. As the carbon cycle is dominantly controlled by the balance between the biological and solubility carbon pumps, innovative methods to exploit existing satellite sea surface temperature and ocean color, and new satellite sea surface salinity measurements, are needed and will enable frequent assessment of ocean acidification parameters over large spatial scales

    Progress in satellite remote sensing for studying physical processes at the ocean surface and its borders with the atmosphere and sea-ice

    Get PDF
    Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents, and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea-ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study i) ocean surface currents, ii) storm surges, iii) sea-ice, iv) atmosphere-ocean gas exchange and v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea-ice volume, atmosphere- ocean gas fluxes, and the potential for 4 dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focussed remote-sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems

    Wavelet Analysis for Wind Fields Estimation

    Get PDF
    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms

    Satellite observations for detecting and forecasting sea-ice conditions: A summary of advances made in the SPICES Project by the EU's Horizon 2020 Programme

    Get PDF
    The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015-2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU's Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services

    Satellite Observations for Detecting and Forecasting Sea-Ice Conditions: A Summary of Advances Made in the SPICES Project by the EU’s Horizon 2020 Programme

    Get PDF
    The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015–2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU’s Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services.</jats:p

    Key Uncertainties in the Recent Air‐Sea Flux of CO 2

    Get PDF
    The contemporary air-sea flux of CO2 is investigated by the use of an air-sea flux equation, with particular attention to the uncertainties in global values and their origin with respect to that equation. In particular, uncertainties deriving from the transfer velocity and from sparse upper ocean sampling are investigated. Eight formulations of air-sea gas transfer velocity are used to evaluate the combined standard uncertainty resulting from several sources of error. Depending on expert opinion, a standard uncertainty in transfer velocity of either ~5% or ~10% can be argued and that will contribute a proportional error in air-sea flux. The limited sampling of upper ocean fCO2 is readily apparent in the Surface Ocean CO2 Atlas (SOCAT) databases. The effect of sparse sampling on the calculated fluxes was investigated by a bootstrap method; i.e. treating each ship cruise to an oceanic region as a random episode and creating 10 synthetic datasets by randomly selecting episodes with replacement. Convincing values of global net air-sea flux can only be achieved using upper ocean data collected over several decades, but referenced to a standard year. The global annual referenced values are robust to sparse sampling, but seasonal and regional values exhibit more sampling uncertainty. Additional uncertainties are related to thermal and haline effects and to aspects of air-sea gas exchange not captured by standard models. An estimate of global net CO2 exchange referenced to 2010 of -3.0 ± 0.6 Pg C yr-1 is proposed, where the uncertainty derives primarily from uncertainty in the transfer velocit
    corecore