769 research outputs found

    Is it enough to be willing to win or do you have to be smart? The relationship between competitive worldviews, cognitive abilities, and applicant faking in personality tests

    Get PDF
    Recent research has highlighted competitive worldviews as a key predictor of faking—the intentional distortion of answers by candidates in the selection context. According to theoretical assumptions, applicants’ abilities, and especially their cognitive abilities, should influence whether faking motivation, triggered by competitive worldviews, can be turned into successful faking behavior. Therefore, we examined the influence of competitive worldviews on faking in personality tests and investigated a possible moderation of this relationship by cognitive abilities in three independent high school and university student samples (N1 = 133, N2 = 137, N3 = 268). Our data showed neither an influence of the two variables nor of their interaction on faking behavior. We discuss possible reasons for these findings and give suggestions for further research

    Multi-wavelength Characterization of Stellar Flares on Low-mass Stars using SDSS and 2MASS Time Domain Surveys

    Get PDF
    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied ~50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r – i) and (i – z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have ~1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to Ks . We determine that red optical filters are sensitive to flares with u-band amplitudes 2 mag, and NIR filters to flares with Δu 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of ΔJ ≄ 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope

    Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation

    Get PDF
    While clonally propagated individuals should share identical genomes, there is often substantial phenotypic variation among them. Both genetic and epigenetic modifications induced during regeneration have been associated with this phenomenon. Here we investigated the fate of the epigenome after asexual propagation by generating clonal individuals from differentiated somatic cells through the manipulation of a zygotic transcription factor. We found that phenotypic novelty in clonal progeny was linked to epigenetic imprints that reflect the organ used for regeneration. Some of these organ-specific imprints can be maintained during the cloning process and subsequent rounds of meiosis. Our findings are fundamental for understanding the significance of epigenetic variability arising from asexual reproduction and have significant implications for future biotechnological applications

    Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup

    Get PDF
    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments

    The role of neuroactive steroids in ethanol/stress interactions: proceedings of symposium VII at the Volterra conference on alcohol and stress, May 2008

    Get PDF
    This report summarizes the proceedings of the symposium VII on the role of neuroactive steroids in stress/alcohol interactions. The production of GABAergic neuroactive steroids, including (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC) is a consequence of both acute stress and acute ethanol exposure. Acute, but not chronic ethanol administration elevates brain levels of these steroids and enhances GABAA receptor activity. Neuroactive steroids modulate acute anticonvulsant effects, sedation, spatial memory impairment, anxiolytic-like, antidepressant-like and reinforcing properties of ethanol in rodents. Furthermore, these steroids participate in the homeostatic regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, it is not surprising that neuroactive steroids are involved in ethanol/stress interactions. Nevertheless, the interactions are complex and not well understood. This symposium addressed the role of neuroactive steroids in both stress and alcohol responses and their interactions. Professor Giovanni Biggio of the University of Cagliari, Italy presented the effects of juvenile isolation stress on neuroactive steroids, GABAA receptor expression and ethanol sensitivity. Professor Howard Becker of the Medical University of South Carolina, USA presented evidence for neuroactive steroid involvement in ethanol dependence and drinking behavior. Professor Patrizia Porcu of the University of North Carolina, USA described a potential neuroactive steroid biomarker that may predict heavy drinking in monkeys and mice. These presentations provide a framework for new theories on the nature of ethanol/stress interactions that may be amenable to therapeutic interventions

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of ÎČ-sheet, normalized frequency of ÎČ-sheet from LG, weights for ÎČ-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGÂș values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Cadherin-11 localizes to focal adhesions and promotes cell-substrate adhesion

    Get PDF
    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with ÎČ1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration
    • 

    corecore