3,461 research outputs found

    Treatment of periodontitis and peri-implantitis with an Er:YAG laser: Experimental and clinical studies

    Get PDF
    Abstract In addition to conventional treatment modalities (mechanical and chemical), the use of different lasers has also been proposed for the treatment of periodontal and peri-implant infections. Preliminary results from both basic studies and controlled clinical trials have pointed to a high potential of the Er:YAG laser. Irradiation with this specific wavelength seems to provide a bactericidal effect against periodontopathic bacteria, a reduction of lipopolysaccharides, and a high ability of bacterial biofilm and calculus removal. Recent clinical results have also indicated that nonsurgical and surgical treatment of periodontitis and peri-implantitis with an Er:YAG laser may lead to significant clinical improvements such as bleeding on probing, probing depth reduction and gain of clinical attachment. The aim of the present review paper is to evaluate, based on the currently available evidence, the use of an Er:YAG laser for treatment of periodontitis and peri-implantitis and to indicate its potential as a new treatment modality

    Carbon fibre composites: integrated electrochemical sensors for wound management

    Get PDF
    The applicability of employing a carbon fibre mesh as an electrochemical sensing substructure for assessing urate transformations within wound exudates is evaluated. Prototype sensor assemblies have been designed and their response characteristics towards uric acid and other common physiological components are detailed. Modification of the carbon fibre sensor through surface anodisation and the application of cellulose acetate permselective barriers have been shown to lead to optimized responses and much greater sensitivity (1440% increase) and specificity. These could enable the accurate periodic monitoring of uric acid in wound fluid. The performance characteristics of the composite sensors in whole blood, serum and blister fluid have been investigated

    NFkB Disrupts Tissue Polarity in 3D by Preventing Integration of Microenvironmental Signals

    Get PDF
    The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant S1 cells that form polarized spheres (\u27acini\u27), the malignant T4-2 cells that form large tumor-like clusters, and the \u27phenotypically reverted\u27 T4-2 cells that polarize as a result of correction of the microenvironmental signaling. We identified 180 genes that display an increased expression in disorganized compared to polarized structures. Network, GSEA and transcription factor binding site analyses suggested that NFkB is a common activator for the 180 genes. NFkB was found to be activated in disorganized breast cancer cells, and inhibition of microenvironmental signaling via EGFR, beta1 integrin, MMPs, or their downstream signals suppressed its activation. The postulated role of NFkB was experimentally verified: Blocking the NFkB pathway with a specific chemical inhibitor or shRNA induced polarization and inhibited invasion of breast cancer cells in 3D cultures. These results may explain why NFkB holds promise as a target for therapeutic intervention: Its inhibition can reverse the oncogenic signaling involved in breast cancer progression and integrate the essential microenvironmental control of tissue architecture

    A new displacement-based approach to calculate stress intensity factors with the boundary element method

    Get PDF
    The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has be-come very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes

    Proposed Definitions of T Cell-Mediated Rejection and Tubulointerstitial Inflammation as Clinical Trial Endpoints in Kidney Transplantation

    Full text link
    The diagnosis of acute T cell-mediated rejection (aTCMR) after kidney transplantation has considerable relevance for research purposes. Its definition is primarily based on tubulointerstitial inflammation and has changed little over time; aTCMR is therefore a suitable parameter for longitudinal data comparisons. In addition, because aTCMR is managed with antirejection therapies that carry additional risks, anxieties, and costs, it is a clinically meaningful endpoint for studies. This paper reviews the history and classifications of TCMR and characterizes its potential role in clinical trials: a role that largely depends on the nature of the biopsy taken (indication vs protocol), the level of inflammation observed (e.g., borderline changes vs full TCMR), concomitant chronic lesions (chronic active TCMR), and the therapeutic intervention planned. There is ongoing variability-and ambiguity-in clinical monitoring and management of TCMR. More research, to investigate the clinical relevance of borderline changes (especially in protocol biopsies) and effective therapeutic strategies that improve graft survival rates with minimal patient morbidity, is urgently required. The present paper was developed from documentation produced by the European Society for Organ Transplantation (ESOT) as part of a Broad Scientific Advice request that ESOT submitted to the European Medicines Agency for discussion in 2020. This paper proposes to move toward refined definitions of aTCMR and borderline changes to be included as primary endpoints in clinical trials of kidney transplantation.Copyright © 2022 Seron, Rabant, Becker, Roufosse, Bellini, Böhmig, Budde, Diekmann, Glotz, Hilbrands, Loupy, Oberbauer, Pengel, Schneeberger and Naesens

    Proposed Definitions of Antibody-Mediated Rejection for Use as a Clinical Trial Endpoint in Kidney Transplantation

    Full text link
    Antibody-mediated rejection (AMR) is caused by antibodies that recognize donor human leukocyte antigen (HLA) or other targets. As knowledge of AMR pathophysiology has increased, a combination of factors is necessary to confirm the diagnosis and phenotype. However, frequent modifications to the AMR definition have made it difficult to compare data and evaluate associations between AMR and graft outcome. The present paper was developed following a Broad Scientific Advice request from the European Society for Organ Transplantation (ESOT) to the European Medicines Agency (EMA), which explored whether updating guidelines on clinical trial endpoints would encourage innovations in kidney transplantation research. ESOT considers that an AMR diagnosis must be based on a combination of histopathological factors and presence of donor-specific HLA antibodies in the recipient. Evidence for associations between individual features of AMR and impaired graft outcome is noted for microvascular inflammation scores ≥2 and glomerular basement membrane splitting of >10% of the entire tuft in the most severely affected glomerulus. Together, these should form the basis for AMR-related endpoints in clinical trials of kidney transplantation, although modifications and restrictions to the Banff diagnostic definition of AMR are proposed for this purpose. The EMA provided recommendations based on this Broad Scientific Advice request in December 2020; further discussion, and consensus on the restricted definition of the AMR endpoint, is required.Copyright © 2022 Roufosse, Becker, Rabant, Seron, Bellini, Böhmig, Budde, Diekmann, Glotz, Hilbrands, Loupy, Oberbauer, Pengel, Schneeberger and Naesens

    Comparative analysis of collagen membranes for the treatment of implant dehiscence defects

    Full text link
    Guided bone regeneration (GBR) evolved from the concept of guided tissue regeneration (GTR) and has been used for reconstructing sites with bone deficiencies associated with dental implants. For GBR, the use of absorbable collagen membranes has been increasing, but, at present, scientific information on the use of collagen membranes for GBR is limited. This study was aimed to clinically and histomorphometrically compare two collagen membranes, Bio-Gide ® and BioMend Extend TM , for the treatment of implant dehiscence defects in eight mongrel dogs. Implant dehiscence defects were surgically created in edentulous ridges, followed by the placement of three endosseous implants bilaterally in the mandible. Each implant dehiscence defect was randomly assigned to one of three treatment groups: (1) control (no membrane), (2) porcine dermis collagen barrier (Bio-Gide) or (3) bovine tendon collagen barrier (BioMend Extend). Dogs were sacrificed at 4 and 16 weeks (four dogs each) after treatment. Histomorphometric analysis included percentage linear bone fill (LF), new bone-to-implant contact (BIC) and area of new bone fill (BF). The results of the study revealed no significant differences among groups for any parameter at 4 weeks. However, at 16 weeks, more LF, BIC, and BF were noted in the membrane-treated groups than controls. BioMend Extend-treated defects demonstrated significantly greater BIC than control ( P  < 0.05) at this time point. BIC at 16 weeks was significantly greater than 4-week BIC ( P  < 0.05). Membrane exposure occurred in 9 out of 15 sites examined, resulting in significantly less LF and BIC than the sites without membrane exposure ( P  < 0.05). The results of this study indicate that: (1) GBR treatment with collagen membranes may significantly enhance bone regeneration, manifested at late stage (16 weeks) of healing; and (2) space maintenance and membrane coverage were the two most important factors affecting GBR using bioabsorbable collagen membranes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72252/1/j.1600-0501.2003.140111.x.pd
    corecore