39,238 research outputs found

    What measurable zero point fluctuations can(not) tell us about dark energy

    Get PDF
    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ~10 eV, well above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally.Comment: 4 page

    Designers manual for circuit design by analog/digital techniques Final report

    Get PDF
    Manual for designing circuits by hybrid compute

    Unusual magnetic fields in the interacting spiral NGC 3627

    Get PDF
    By observing the interacting galaxy NGC 3627 in radio polarization we try to answer the question to which degree the magnetic field follows the galactic gas flows. We obtained total power and polarized intensity maps at 8.46 GHz and 4.85 GHz using the VLA in its compact D-configuration. In order to overcome the zero-spacing problems, the interferometric data were combined with single-dish measurements obtained with the Effelsberg 100-m radio telescope. The observed magnetic field structure in NGC 3627 suggests that two field components are superposed. One component smoothly fills the interarm space and shows up also in the outermost disk regions, the other component follows a symmetric S-shaped structure. In the western disk the latter component is well aligned with an optical dust lane, following a bend which is possibly caused by external interactions. However, in the SE disk the magnetic field crosses a heavy dust lane segment, apparently being insensitive to strong density-wave effects. We suggest that the magnetic field is decoupled from the gas by high turbulent diffusion, in agreement with the large \ion{H}{i} line width in this region. We discuss in detail the possible influence of compression effects and non-axisymmetric gas flows on the general magnetic field asymmetries in NGC 3627. On the basis of the Faraday rotation distribution we also suggest the existence of a large ionized halo around this galaxy.Comment: 11 pages, 11 figure

    Lagrangian acceleration statistics in turbulent flows

    Full text link
    We show that the probability densities af accelerations of Lagrangian test particles in turbulent flows as measured by Bodenschatz et al. [Nature 409, 1017 (2001)] are in excellent agreement with the predictions of a stochastic model introduced in [C. Beck, PRL 87, 180601 (2001)] if the fluctuating friction parameter is assumed to be log-normally distributed. In a generalized statistical mechanics setting, this corresponds to a superstatistics of log-normal type. We analytically evaluate all hyperflatnes factors for this model and obtain a flatness prediction in good agreement with the experimental data. There is also good agreement with DNS data of Gotoh et al. We relate the model to a generalized Sawford model with fluctuating parameters, and discuss a possible universality of the small-scale statistics.Comment: 10 pages, 2 figure

    The Infrared Nucleus of the Wolf-Rayet Galaxy Henize 2-10

    Get PDF
    We have obtained near-infrared images and mid-infrared spectra of the starburst core of the dwarf Wolf-Rayet galaxy He 2-10. We find that the infrared continuum and emission lines are concentrated in a flattened ellipse 3-4'' or 150 pc across which may show where a recent accretion event has triggered intense star formation. The ionizing radiation from this cluster has an effective temperature of 40,000 K, corresponding to 30M30M_\odot stars, and the starburst is 0.51.5×1070.5-1.5 \times 10^7 years old.Comment: 17 pages Latex, 7 postscript figures, 1 postscript table, accepted to A

    Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors

    Full text link
    We study the transport of spin polarized electrons in n-GaAs using spatially resolved continuous wave Faraday rotation. From the measured steady state distribution, we determine spin relaxation times under drift conditions and, in the presence of strain, the induced spin splitting from the observed spin precession. Controlled variation of strain along [110] allows us to deduce the deformation potential causing this effect, while strain along [100] has no effect. The electric field dependence of the spin lifetime is explained quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure

    Dense Molecular Filaments Feeding a Starburst: ALMA Maps of CO(3-2) in Henize 2-10

    Full text link
    We present ALMA CO(3-2) observations at 0.3 arcsec resolution of He2-10, a starburst dwarf galaxy and possible high-z galaxy analogue. The warm dense gas traced by CO(3--2) is found in clumpy filaments that are kinematically and spatially distinct. The filaments have no preferred orientation or direction; this may indicate that the galaxy is not evolving into a disk galaxy. Filaments appear to be feeding the active starburst; the velocity field in one filament suggests acceleration onto an embedded star cluster. The relative strengths of CO(3-2) and radio continuum vary strongly on decaparsec scales in the starburst. There is no CO(3--2) clump coincident with the non-thermal radio source that has been suggested to be an AGN, nor unusual kinematics. The kinematics of the molecular gas show significant activity apparently unrelated to the current starburst. The longest filament, east of the starburst, has a pronounced shear of FWHM 40\sim40~\kms\ across its \sim50~pc width over its entire 0.5\approx 0.5 kpc length. The cause of the shear is not clear. This filament is close in projection to a `dynamically distinct' CO feature previously seen in CO(1--0). The most complex region and the most highly disturbed gas velocities are in a region 200~pc south of the starburst. The CO(3--2) emission there reveals a molecular outflow, of linewidth FWZI \sim 120-140 \kms, requiring an energy 1053 erg/s\gtrsim 10^{53} \rm~ erg/s. There is at present {\it no} candidate for the driving source of this outflow.Comment: This was revised 31 October to correct some typos and to replace Figure

    Synthetic X-ray and radio maps for two different models of Stephan's Quintet

    Full text link
    We present simulations of the compact galaxy group Stephan's Quintet (SQ) including magnetic fields, performed with the N-body/smoothed particle hydrodynamics (SPH) code \textsc{Gadget}. The simulations include radiative cooling, star formation and supernova feedback. Magnetohydrodynamics (MHD) is implemented using the standard smoothed particle magnetohydrodynamics (SPMHD) method. We adapt two different initial models for SQ based on Renaud et al. and Hwang et al., both including four galaxies (NGC 7319, NGC 7320c, NGC 7318a and NGC 7318b). Additionally, the galaxies are embedded in a magnetized, low density intergalactic medium (IGM). The ambient IGM has an initial magnetic field of 10910^{-9} G and the four progenitor discs have initial magnetic fields of 10910710^{-9} - 10^{-7} G. We investigate the morphology, regions of star formation, temperature, X-ray emission, magnetic field structure and radio emission within the two different SQ models. In general, the enhancement and propagation of the studied gaseous properties (temperature, X-ray emission, magnetic field strength and synchrotron intensity) is more efficient for the SQ model based on Renaud et al., whose galaxies are more massive, whereas the less massive SQ model based on Hwang et al. shows generally similar effects but with smaller efficiency. We show that the large shock found in observations of SQ is most likely the result of a collision of the galaxy NGC 7318b with the IGM. This large group-wide shock is clearly visible in the X-ray emission and synchrotron intensity within the simulations of both SQ models. The order of magnitude of the observed synchrotron emission within the shock front is slightly better reproduced by the SQ model based on Renaud et al., whereas the distribution and structure of the synchrotron emission is better reproduced by the SQ model based on Hwang et al..Comment: 20 pages, 15 figures, accepted to MNRA

    Magnetic fields and spiral arms in the galaxy M51

    Full text link
    (Abridged) We use new multi-wavelength radio observations, made with the VLA and Effelsberg telescopes, to study the magnetic field of the nearby galaxy M51 on scales from 200\pc to several \kpc. Interferometric and single dish data are combined to obtain new maps at \wwav{3}{6} in total and polarized emission, and earlier \wav{20} data are re-reduced. We compare the spatial distribution of the radio emission with observations of the neutral gas, derive radio spectral index and Faraday depolarization maps, and model the large-scale variation in Faraday rotation in order to deduce the structure of the regular magnetic field. We find that the \wav{20} emission from the disc is severely depolarized and that a dominating fraction of the observed polarized emission at \wav{6} must be due to anisotropic small-scale magnetic fields. Taking this into account, we derive two components for the regular magnetic field in this galaxy: the disc is dominated by a combination of azimuthal modes, m=0+2m=0+2, but in the halo only an m=1m=1 mode is required to fit the observations. We disuss how the observed arm-interarm contrast in radio intensities can be reconciled with evidence for strong gas compression in the spiral shocks. The average arm--interam contrast, representative of the radii r>2\kpc where the spiral arms are broader, is not compatible with straightforward compression: lower arm--interarm contrasts than expected may be due to resolution effects and \emph{decompression} of the magnetic field as it leaves the arms. We suggest a simple method to estimate the turbulent scale in the magneto-ionic medium from the dependence of the standard deviation of the observed Faraday rotation measure on resolution. We thus obtain an estimate of 50\pc for the size of the turbulent eddies.Comment: 21 pages, 18 figures (some at lower resolution than submitted version), accepted for publication in MNRA

    A New Multi-Resource cumulatives Constraint with Negative Heights

    Get PDF
    This paper presents a new cumulatives constraint which generalizes the original cumulative constraint in different ways. The two most important aspects consist in permitting multiple cumulative resources as well as negative heights for the resource consumption of the tasks. This allows modeling in an easy way new scheduling and planning problems. The introduction of negative heights has forced us to come up with new propagation algorithms and to revisit existing ones. The first propagation algorithm is derived from an idea called sweep which is extensively used in computational geometry; the second algorithm is based on a combination of sweep and constructive disjunction, while the last is a generalization of task intervals to this new context. A real-life timetabling problem originally motivated this constraint which was implemented within the SICStus finite domain solver and evaluated against different problem patterns
    corecore