11 research outputs found

    Artificial pancreas systems for people with type 2 diabetes: Conception and design of the european CLOSE project

    Get PDF
    In the last 10 years tremendous progress has been made in the development of artificial pancreas (AP) systems for people with type 1 diabetes (T1D). The pan-European consortium CLOSE (Automated Glucose Control at Home for People with Chronic Disease) is aiming to develop integrated AP solutions (APplus) tailored to the needs of people with type 2 diabetes (T2D). APplus comprises a product and service package complementing the AP system by obligatory training as well as home visits and telemedical consultations on demand. Outcome predictors and performance indicators shall help to identify people who could benefit most from AP usage and facilitate the measurement of AP impact in diabetes care. In a first step CLOSE will establish a scalable APplus model case working at the interface between patients, homecare service providers, and payers in France. CLOSE will then scale up APplus by pursuing geographic distribution, targeting additional audiences, and enhancing AP functionalities and interconnectedness. By being part of the European Institute of Innovation and Technology (EIT) Health public-private partnership, CLOSE is committed to the EIT “knowledge triangle” pursuing the integrated advancement of technology, education, and business creation. Putting stakeholders, education, and impact into the center of APplus advancement is considered key for achieving wide AP use in T2D care

    Λ c+ production in Pb–Pb collisions at s NN =5.02 TeV

    No full text
    AA measurement of the production of prompt Λ c + baryons in Pb–Pb collisions at s NN =5.02 TeV with the ALICE detector at the LHC is reported. The Λ c + and Λ‾ c − were reconstructed at midrapidity (|y|<0.5) via the hadronic decay channel Λ c + →pK S 0 (and charge conjugate) in the transverse momentum and centrality intervals

    Lambda(+)(C) production in pb-pb collisions at root S-NN=5.02 TeV

    No full text
    A measurement of the production of prompt +cbaryons in Pb–Pb collisions at √sNN=5.02 TeV with the ALICE detector at the LHC is reported. The +cand −cwere reconstructed at midrapidity (|y| <0.5) via the hadronic decay channel +c→pK0S(and charge conjugate) in the transverse momentum and centrality intervals 6 <pT<12 GeV/cand 0–80%. The +c/D0ratio, which is sensitive to the charm quark hadronisation mechanisms in the medium, is measured and found to be larger than the ratio measured in minimum-bias pp collisions at √s=7TeV and in p–Pb collisions at √sNN=5.02 TeV. In particular, the values in p–Pb and Pb–Pb collisions differ by about two standard deviations of the combined statistical and systematic uncertainties in the common pTinterval covered by the measurements in the two collision systems. The +c/D0ratio is also compared with model calculations including different implementations of charm quark hadronisation. The measured ratio is reproduced by models implementing a pure coalescence scenario, while adding a fragmentation contribution leads to an underestimation. The +cnuclear modification factor, RAA, is also presented. The measured values of the RAAof +c, D+sand non-strange D mesons are compatible within the combined statistical and systematic uncertainties. They show, however, a hint of a hierarchy (RD0AA<RD+sAA<R +cAA), conceivable with a contribution from coalescence mechanisms to charm hadron formation in the medium

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWW Production in pp Collisions at p=13 TeV with the ATLAS Detector ffi s

    No full text
    This Letter reports the observation of WWW production and a measurement of its cross section using 139  fb^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWW production cross section is measured to be 820±100 (stat)±80 (syst)  fb, approximately 2.6 standard deviations from the predicted cross section of 511±18  fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy
    corecore