126 research outputs found
An overview of historical and contemporary concrete shells, their construction and factors in their general disappearance
Only through understanding why concrete shells’ loss in popularity over the course of modern history can designers be equipped with the skills to create and apply this type of construction. Through modifications to design processes, construction stages, material understanding and relevant formwork improvements will architects and designers be able to meet the demands of the 21st century and beyond.
To understand why concrete shells are no longer commonly built is to understand its construction process. An amorphous material, the fundamental relationship between formwork and the resultant concrete shell needs to be raised, appreciated, understood and analyzed for a holistic understanding of concrete shells. Through understanding this, issues and factors affecting concrete shells can be tackled and designed out in reviving this type of structures because they can be efficient in structural performance, economical in cost and provide high aesthetic value.
This paper discusses concrete shells as an architectural solution by asking the question to what constituted their popularity and factors that led to their demise in the modern age of technological advancement, construction process and environmental concerns. This paper presents a cultural perspective and an overview of seminal, historical and contemporary concrete shells so as to bring about a renaissance of such structures in our built environment once again because of all the benefits it can offer.</p
Role of Vitamin D in preventing and treating selected extraskeletal diseases: an umbrella review
Evidence is accumulating that vitamin D may have beneficial effects on respiratory tract, autoimmune, neuro-degenerative, and mental diseases. The present umbrella review of systematic reviews (SRs) of cohort studies and randomised controlled trials (RCTs), plus single Mendelian randomisation studies aims to update current knowledge on the potential role of vitamin D in preventing and treating these extraskeletal diseases. Altogether, 73 SRs were identified. Observational data on primary prevention suggest an inverse association between vitamin D status and the risk of acute respiratory tract infections (ARI), dementia and cognitive decline, and depression, whereas studies regarding asthma, multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM) are scarce. SRs of RCTs support observational data only for the risk of ARI. No respective RCTs are available for the prevention of chronic obstructive pulmonary disease (COPD), MS, and T1DM. SRs of RCTs indicate beneficial therapeutic effects in vitamin D-deficient patients with asthma and COPD, while effects on major depression and T1DM need to be further elucidated. Mendelian randomisation studies do not consistently support the results of SRs. Since several limitations of the included SRs and existing RCTs do not permit definitive conclusions regarding vitamin D and the selected diseases, further high-quality RCTs are warranted
Bio-Based Succinate Production from Arundo donax Hydrolysate with the New Natural Succinic Acid-Producing Strain Basfia succiniciproducens BPP7
n/
Tandem synthesis of alternating polyesters from renewable resources
The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters
Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods
With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage
- …
