125 research outputs found

    In silico genotyping of the maize nested association mapping population

    Get PDF
    Nested Association Mapping (NAM) has been proposed as a means to combine the power of linkage mapping with the resolution of association mapping. It is enabled through sequencing or array genotyping of parental inbred lines while using low-cost, low-density genotyping technologies for their segregating progenies. For purposes of data analyses of NAM populations, parental genotypes at a large number of Single Nucleotide Polymorphic (SNP) loci need to be projected to their segregating progeny. Herein we demonstrate how approximately 0.5 million SNPs that have been genotyped in 26 parental lines of the publicly available maize NAM population can be projected onto their segregating progeny using only 1,106 SNP loci that have been genotyped in both the parents and their 5,000 progeny. The challenge is to estimate both the genotype and genetic location of the parental SNP genotypes in segregating progeny. Both challenges were met by estimating their expected genotypic values conditional on observed flanking markers through the use of both physical and linkage maps. About 90%, of 500,000 genotyped SNPs from the maize HapMap project, were assigned linkage map positions using linear interpolation between the maize Accessioned Gold Path (AGP) and NAM linkage maps. Of these, almost 70% provided high probability estimates of genotypes in almost 5,000 recombinant inbred lines

    Characteristics of predictor sets found using differential prioritization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feature selection plays an undeniably important role in classification problems involving high dimensional datasets such as microarray datasets. For filter-based feature selection, two well-known criteria used in forming predictor sets are relevance and redundancy. However, there is a third criterion which is at least as important as the other two in affecting the efficacy of the resulting predictor sets. This criterion is the degree of differential prioritization (DDP), which varies the emphases on relevance and redundancy depending on the value of the DDP. Previous empirical works on publicly available microarray datasets have confirmed the effectiveness of the DDP in molecular classification. We now propose to establish the fundamental strengths and merits of the DDP-based feature selection technique. This is to be done through a simulation study which involves vigorous analyses of the characteristics of predictor sets found using different values of the DDP from toy datasets designed to mimic real-life microarray datasets.</p> <p>Results</p> <p>A simulation study employing analytical measures such as the distance between classes before and after transformation using principal component analysis is implemented on toy datasets. From these analyses, the necessity of adjusting the differential prioritization based on the dataset of interest is established. This conclusion is supported by comparisons against both simplistic rank-based selection and state-of-the-art equal-priorities scoring methods, which demonstrates the superiority of the DDP-based feature selection technique. Reapplying similar analyses to real-life multiclass microarray datasets provides further confirmation of our findings and of the significance of the DDP for practical applications.</p> <p>Conclusion</p> <p>The findings have been achieved based on analytical evaluations, not empirical evaluation involving classifiers, thus providing further basis for the usefulness of the DDP and validating the need for unequal priorities on relevance and redundancy during feature selection for microarray datasets, especially highly multiclass datasets.</p

    Feasibility of Image-Guided Radiotherapy for Elderly Patients with Locally Advanced Rectal Cancer

    Get PDF
    PURPOSE: The study aims to assess the tolerance of elderly patients (70 years or older) with locally advanced rectal cancers to image-guided radiotherapy (IGRT). A retrospective review of 13 elderly patients with locally advanced rectal cancer who underwent preoperative chemoradiation using IGRT was performed. Grade 3-4 acute toxicities, survival, and long-term complications were compared to 17 younger patients (<70 years) with the same disease stage. RESULTS: Grade 3-4 hematologic toxicities occurred in 7.6% and 0% (p = 0.4) and gastrointestinal toxicities, and, in 15.2% and 5% (p = 0.5), of elderly and younger patients, respectively. Surgery was aborted in three patients, two in the elderly group and one in the younger group. One patient in the elderly group died after surgery from cardiac arrhythmia. After a median follow-up of 34 months, five patients had died, two in the elderly and three in the younger group. The 3-year survival was 90.9% and 87.5% (p = 0.7) for the elderly and younger group respectively. Two patients in the younger group developed ischemic colitis and fecal incontinence. There was no statistically significant difference in acute and late toxicities as well as survival between the two groups. CONCLUSIONS AND CLINICAL RELEVANCE: Elderly patients with locally advanced rectal cancers may tolerate preoperative chemoradiation with IGRT as well as younger patients. Further prospective studies should be performed to investigate the potential of IGRT for possible cure in elderly patients with locally advanced rectal cancer

    Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

    Get PDF
    In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits

    The Complex Genetic Architecture of the Metabolome

    Get PDF
    Discovering links between the genotype of an organism and its metabolite levels can increase our understanding of metabolism, its controls, and the indirect effects of metabolism on other quantitative traits. Recent technological advances in both DNA sequencing and metabolite profiling allow the use of broad-spectrum, untargeted metabolite profiling to generate phenotypic data for genome-wide association studies that investigate quantitative genetic control of metabolism within species. We conducted a genome-wide association study of natural variation in plant metabolism using the results of untargeted metabolite analyses performed on a collection of wild Arabidopsis thaliana accessions. Testing 327 metabolites against >200,000 single nucleotide polymorphisms identified numerous genotype–metabolite associations distributed non-randomly within the genome. These clusters of genotype–metabolite associations (hotspots) included regions of the A. thaliana genome previously identified as subject to recent strong positive selection (selective sweeps) and regions showing trans-linkage to these putative sweeps, suggesting that these selective forces have impacted genome-wide control of A. thaliana metabolism. Comparing the metabolic variation detected within this collection of wild accessions to a laboratory-derived population of recombinant inbred lines (derived from two of the accessions used in this study) showed that the higher level of genetic variation present within the wild accessions did not correspond to higher variance in metabolic phenotypes, suggesting that evolutionary constraints limit metabolic variation. While a major goal of genome-wide association studies is to develop catalogues of intraspecific variation, the results of multiple independent experiments performed for this study showed that the genotype–metabolite associations identified are sensitive to environmental fluctuations. Thus, studies of intraspecific variation conducted via genome-wide association will require analyses of genotype by environment interaction. Interestingly, the network structure of metabolite linkages was also sensitive to environmental differences, suggesting that key aspects of network architecture are malleable

    Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus

    Get PDF
    Background: Eucalyptus is an important genus in industrial plantations throughout the world and is grown for use as timber, pulp, paper and charcoal. Several breeding programmes have been launched worldwide to concomitantly improve growth performance and wood properties (WPs). In this study, an interspecific cross between Eucalyptus urophylla and E. grandis was used to identify major genomic regions (Quantitative Trait Loci, QTL) controlling the variability of WPs. Results: Linkage maps were generated for both parent species. A total of 117 QTLs were detected for a series of wood and end-use related traits, including chemical, technological, physical, mechanical and anatomical properties. The QTLs were mainly clustered into five linkage groups. In terms of distribution of QTL effects, our result agrees with the typical L-shape reported in most QTL studies, i.e. most WP QTLs had limited effects and only a few (13) had major effects (phenotypic variance explained &gt; 15%). The co-locations of QTLs for different WPs as well as QTLs and candidate genes are discussed in terms of phenotypic correlations between traits, and of the function of the candidate genes. The major wood property QTL harbours a gene encoding a Cinnamoyl CoA reductase (CCR), a structural enzyme of the monolignol-specific biosynthesis pathway. Conclusions: Given the number of traits analysed, this study provides a comprehensive understanding of the genetic architecture of wood properties in this Eucalyptus full-sib pedigree. At the dawn of Eucalyptus genome sequence, it will provide a framework to identify the nature of genes underlying these important quantitative traits. (Résumé d'auteur

    Relevance of tumor-infiltrating lymphocytes in breast cancer

    Get PDF
    While breast cancer has not been considered a cancer amenable to immunotherapeutic approaches, recent studies have demonstrated evidence of significant immune cell infiltration via tumor-infiltrating lymphocytes in a subset of patient tumors. In this review we present the current evidence highlighting the clinical relevance and utility of tumor-infiltrating lymphocytes in breast cancer. Retrospective and prospective studies have shown that the presence of tumor-infiltrating lymphocytes is a prognostic marker for higher responses to neoadjuvant chemotherapy and better survival, particularly in triple negative and HER2-positive early breast cancer. Further work is required to determine the immune subsets important in this response and to discover ways of encouraging immune infiltrate in tumor-infiltrating lymphocytes-negative patients
    • 

    corecore