216 research outputs found

    Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels

    Get PDF
    It is well known that reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC26–PHPMA280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC26) precursor do not undergo degelation on cooling to 6 Β°C (see S. Sugihara et al., J. Am. Chem. Soc., 2011, 133, 15707–15713). Informed by our recent studies (N. J. Warren et al., Macromolecules, 2018, 51, 8357–8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC15–PHPMA150 worm gel from 40 Β°C to 6 Β°C. Moreover, worms are reconstituted on returning to 40 Β°C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 (β‰ˆ2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems

    Longitudinal effects of environmental enrichment on behaviour and physiology of pigs reared on an intensive-stock farm

    Get PDF
    The aim of this paper was to provide a longitudinal evaluation of the effects of physical enrichments on the behaviour and physiology of intensive stock-farming pigs. Twenty-eight crossbred pigs of both sexes, were exposed to four types of enrichments (hemp ropes, steel chains, plastic balls, rubber hoses) over a period of eleven weeks. This investigation was based on specific abnormal behaviours and physiological indicators, including hematologic parameters. For behavioural score, focal sampling was used with recording of abnormal behaviours (body-, tail- and ear-biting), belly nosing, running, and interaction with objects (for Enriched pigs). The presence of skin injuries was also recorded. In general, the frequency of abnormal behaviours was significantly reduced in the Enriched group. A timerelated profile appeared in the use of the enrichments. Males showed higher occurrence of skin injuries than females. Physiological measurements, such as levels of complement system, white blood cells and neutrophils, were lower in pigs from the Enriched group. Enriched pigs, as a whole, presented much lower levels of serum DHEA-S concentration over two weeks. The findings of this study show the successful provision of appropriate enrichments to encourage behaviours which may result in satisfactory animal oral interaction with the enriching objects, preventing them biting pen-mates. In this respect, the objects proposed were strongly effective in producing changes in behaviour which could mitigate inadequate conditions, such as the relationship between animal body weight and the available space allowance

    Hydrocarbon-based statistical copolymers outperform block copolymers for stabilization of ethanol–water Foams

    Get PDF
    Well-defined block copolymers have been widely used as emulsifiers, stabilizers, and dispersants in the chemical industry for at least 50 years. In contrast, nature employs amphiphilic proteins as polymeric surfactants whereby the spatial distribution of hydrophilic and hydrophobic amino acids within the polypeptide chains is optimized for surface activity. Herein, we report that polydisperse statistical copolymers prepared by conventional free-radical copolymerization can provide superior foaming performance compared to the analogous diblock copolymers. A series of predominantly (meth)acrylic comonomers are screened to identify optimal surface activity for foam stabilization of aqueous ethanol solutions. In particular, all-acrylic statistical copolymers comprising trimethylhexyl acrylate and poly(ethylene glycol) acrylate, P(TMHA-stat-PEGA), confer strong foamability and also lower the surface tension of a range of ethanol–water mixtures to a greater extent than the analogous block copolymers. For ethanol-rich hand sanitizer formulations, foam stabilization is normally achieved using environmentally persistent silicone-based copolymers or fluorinated surfactants. Herein, the best-performing fully hydrocarbon-based copolymer surfactants effectively stabilize ethanol-rich foams by a mechanism that resembles that of naturally-occurring proteins. This ability to reduce the surface tension of low-surface-energy liquids suggests a wide range of potential commercial applications

    Control of particle size in the self-assembly of amphiphilic statistical copolymers

    Get PDF
    A range of amphiphilic statistical copolymers is synthesized where the hydrophilic component is either methacrylic acid (MAA) or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the hydrophobic component comprises methyl, ethyl, butyl, hexyl, or 2-ethylhexyl methacrylate, which provide a broad range of partition coefficients (logβ€―P). Small-angle X-ray scattering studies confirm that these amphiphilic copolymers self-assemble to form well-defined spherical nanoparticles in an aqueous solution, with more hydrophobic copolymers forming larger nanoparticles. Varying the nature of the alkyl substituent also influenced self-assembly with more hydrophobic comonomers producing larger nanoparticles at a given copolymer composition. A model based on particle surface charge density (PSC model) is used to describe the relationship between copolymer composition and nanoparticle size. This model assumes that the hydrophilic monomer is preferentially located at the particle surface and provides a good fit to all of the experimental data. More specifically, a linear relationship is observed between the surface area fraction covered by the hydrophilic comonomer required to achieve stabilization and the logβ€―P value for the hydrophobic comonomer. Contrast variation small-angle neutron scattering is used to study the internal structure of these nanoparticles. This technique indicates partial phase separation within the nanoparticles, with about half of the available hydrophilic comonomer repeat units being located at the surface and hydrophobic comonomer-rich cores. This information enables a refined PSC model to be developed, which indicates the same relationship between the surface area fraction of the hydrophilic comonomer and the logβ€―P of the hydrophobic comonomer repeat units for the anionic (MAA) and cationic (DMAEMA) comonomer systems. This study demonstrates how nanoparticle size can be readily controlled and predicted using relatively ill-defined statistical copolymers, making such systems a viable attractive alternative to diblock copolymer nanoparticles for a range of industrial applications

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Domatia reduce larval cannibalism in predatory mites

    Get PDF
    1. Acarodomatia are small structures on the underside of leaves of many plant species, which are mainly inhabited by carnivorous and fungivorous mites. 2. Domatia are thought to protect these mites against adverse environmental conditions and against predation. They are considered as an indirect plant defence; they provide shelter to predators and fungivores and these in turn protect the plants against herbivores and fungi. 3. We studied the possible role of domatia of coffee (Coffea arabica L.) (Rubiaceae) and sweet pepper (Capsicum annum L.) (Solanaceae) in reducing cannibalism in the mites inhabiting the domatia. We measured cannibalism of larvae by adults of the predatory mites Iphiseiodes zuluagai Denmark & Muma and Amblyseius herbicolus Chant on coffee leaf discs and of the predatory mite Iphiseius degenerans (Berl.) on sweet pepper leaf. Domatia were closed with glue or left open. 4. Cannibalism in all three species increased when domatia were closed. With I. degenerans, moreover, we found that the previous diet of the cannibal attenuated the effect of domatia on cannibalism. 5. We conclude that domatia can protect young predatory mites against cannibalism by adults and that the diet of cannibals affects the rate of cannibalism

    Exploring interactions of plant microbiomes

    Get PDF
    A plethora of microbial cells is present in every gram of soil, and microbes are found extensively in plant and animal tissues. The mechanisms governed by microorganisms in the regulation of physiological processes of their hosts have been extensively studied in the light of recent findings on microbiomes. In plants, the components of these microbiomes may form distinct communities, such as those inhabiting the plant rhizosphere, the endosphere and the phyllosphere. In each of these niches, the "microbial tissue" is established by, and responds to, specific selective pressures. Although there is no clear picture of the overall role of the plant microbiome, there is substantial evidence that these communities are involved in disease control, enhance nutrient acquisition, and affect stress tolerance. In this review, we first summarize features of microbial communities that compose the plant microbiome and further present a series of studies describing the underpinning factors that shape the phylogenetic and functional plant-associated communities. We advocate the idea that understanding the mechanisms by which plants select and interact with their microbiomes may have a direct effect on plant development and health, and further lead to the establishment of novel microbiome-driven strategies, that can cope with the development of a more sustainable agriculture

    Postoperative complications after procedure for prolapsed hemorrhoids (PPH) and stapled transanal rectal resection (STARR) procedures

    Get PDF
    Procedure for prolapsing hemorrhoids (PPH) and stapled transanal rectal resection for obstructed defecation (STARR) carry low postoperative pain, but may be followed by unusual and severe postoperative complications. This review deals with the pathogenesis, prevention and treatment of adverse events that may occasionally be life threatening. PPH and STARR carry the expected morbidity following anorectal surgery, such as bleeding, strictures and fecal incontinence. Complications that are particular to these stapled procedures are rectovaginal fistula, chronic proctalgia, total rectal obliteration, rectal wall hematoma and perforation with pelvic sepsis often requiring a diverting stoma. A higher complication rate and worse results are expected after PPH for fourth-degree piles. Enterocele and anismus are contraindications to PPH and STARR and both operations should be used with caution in patients with weak sphincters. In conclusion, complications after PPH and STARR are not infrequent and may be difficult to manage. However, if performed in selected cases by skilled specialists aware of the risks and associated diseases, some complications may be prevented

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector
    • …
    corecore