62 research outputs found

    Beam-Breakup Instability Theory for Energy Recovery Linacs

    Full text link
    Here we will derive the general theory of the beam-breakup instability in recirculating linear accelerators, in which the bunches do not have to be at the same RF phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs) where bunches are recirculated at a decelerating phase of the RF wave and for other recirculator arrangements where different RF phases are of an advantage. Furthermore it can be used for the analysis of phase errors of recirculated bunches. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. The general formulas are then analyzed for several analytically solvable cases, which show: (a) Why different higher order modes (HOM) in one cavity do not couple so that the most dangerous modes can be considered individually. (b) How different HOM frequencies have to be in order to consider them separately. (c) That no optics can cause the HOMs of two cavities to cancel. (d) How an optics can avoid the addition of the instabilities of two cavities. (e) How a HOM in a multiple-turn recirculator interferes with itself. Furthermore, a simple method to compute the orbit deviations produced by cavity misalignments has also been introduced. It is shown that the BBU instability always occurs before the orbit excursion becomes very large.Comment: 12 pages, 6 figure

    Tunable Semiconducting Polymer Nanoparticles with INDT-Based Conjugated Polymers for Photoacoustic Molecular Imaging.

    Get PDF
    Photoacoustic imaging combines both excellent spatial resolution with high contrast and specificity, without the need for patients to be exposed to ionizing radiation. This makes it ideal for the study of physiological changes occurring during tumorigenesis and cardiovascular disease. In order to fully exploit the potential of this technique, new exogenous contrast agents with strong absorbance in the near-infrared range, good stability and biocompatibility, are required. In this paper, we report the formulation and characterization of a novel series of endogenous contrast agents for photoacoustic imaging in vivo. These contrast agents are based on a recently reported series of indigoid π-conjugated organic semiconductors, coformulated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, to give semiconducting polymer nanoparticles of about 150 nm diameter. These nanoparticles exhibited excellent absorption in the near-infrared region, with good photoacoustic signal generation efficiencies, high photostability, and extinction coefficients of up to three times higher than those previously reported. The absorption maximum is conveniently located in the spectral region of low absorption of chromophores within human tissue. Using the most promising semiconducting polymer nanoparticle, we have demonstrated wavelength-dependent differential contrast between vasculature and the nanoparticles, which can be used to unambiguously discriminate the presence of the contrast agent in vivo

    Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    Get PDF
    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques

    Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles

    Get PDF
    Candle-soot nanoparticles (CSNPs) have shown great promise for fabricating optical ultrasound (OpUS) transmitters. They have a facile, inexpensive synthesis whilst their unique, porous structure enables a fast heat diffusion rate which aids high-frequency ultrasound generation necessary for high-resolution clinical imaging. These composites have demonstrated high ultrasound generation performance showing clinically relevant detail, when applied as macroscale OpUS transmitters comprising both concave and planar surfaces, however, less research has been invested into the translation of this material's technology to fabricate fiber-optic transmitters for image guidance of minimally invasive interventions. Here, are reported two fabrication methods of nanocomposites composed of CSNPs embedded within polydimethylsiloxane (PDMS) deposited onto fiber-optic end-faces using two different optimized fabrication methods: “All-in-One” and “Direct Deposition.” Both types of nanocomposite exhibit a smooth, black domed structure with a maximum dome thickness of 50 µm, broadband optical absorption (>98% between 500 and 1400 nm) and both nanocomposites generated high peak-to-peak ultrasound pressures (>3 MPa) and wide bandwidths (>29 MHz). Further, high-resolution (<40 µm axial resolution) B-mode ultrasound imaging of ex vivo lamb brain tissue demonstrating how CSNP-PDMS OpUS transmitters can allow for high fidelity minimally invasive imaging of biological tissues is demonstrated

    Prescribing in type 2 diabetes patients with and without cardiovascular disease history: A descriptive analysis in the UK CPRD

    Get PDF
    PURPOSE: Some classes of glucose-lowering medications, including sodium-glucose co-transporter 2 inhibitors (SGLT2is) and glucagon-like peptide 1-receptor agonists (GLP1-RAs) have cardio-protective benefit, but it is unclear whether this influences prescribing in the United Kingdom (UK). This study aims to describe class-level prescribing in adults with type 2 diabetes mellitus (T2DM) by cardiovascular disease (CVD) history using the Clinical Practice Research Datalink (CPRD). METHODS: Four cross-sections of people with T2DM aged 18-90 and registered with their general practice for >1 year on 1st January 2017 (n = 166,012), 1st January 2018 (n = 155,290), 1st January 2019 (n = 152,602) and 31st December 2019 (n = 143,373) were identified. Age-standardised proportions for class use through time were calculated separately in those with and without CVD history and by total number of medications prescribed (one, two, three, four+). An analysis by UK country was also performed. FINDINGS: Around 31% of patients had CVD history at each cross-section. Metformin was the most common treatment (>70% of those with and without CVD had prescriptions across all treatment lines). Overall use of SGLT2is and GLP1-RAs was low, with slightly less use in patients with CVD (SGLT2i: 9.8% and 13.8% in those with and without CVD respectively; GLP1-RA: 4.3% and 4.9%, December 2019). Use of SGLT2is as part of dual therapy was low but rose throughout the study. In January 2017, estimated use was 8.0% (95% CI 6.9-9.1%) and 8.9% (8.6-9.3%) in those with and without CVD. By December 2019 this reached 18.3% (17.0-19.5%) and 21.2% (20.6-21.7%) for those with and without CVD respectively. SGLT2i use as triple therapy increased: 22.7% (21.0-24.4%) and 25.9% (25.2-26.6%) in January 2017 to 41.3% (39.5-43.0%) and 45.5% (44.7-46.3%) in December 2019. GLP1-RA use also increased, but observed usage remained lower than SGLT2 inhibitors. Insulin use remained stable throughout, with higher use observed in those with CVD (16% vs 9.7% Dec 2019). Time trends in England, Wales, Scotland and Northern Ireland were similar, although class prevalence varied. IMPLICATIONS: Although use of SGLT2is and GLP1-RAs has increased, overall usage remains low with slightly lower use in those with CVD history, suggesting there is opportunity to optimise use of these medicines in T2DM patients to manage CVD risk. Insulin use was substantially more prevalent in those with CVD despite no evidence of CVD benefit. Further investigation of factors influencing this finding may highlight strategies to improve patient access to the most appropriate treatments, including those with evidence of cardiovascular benefit

    Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Get PDF
    A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2) nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction

    Roadmap on optical energy conversion

    Get PDF
    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light–matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.United States. Department of Energy (DE-AC36-086038308

    Tools and data services registry: a community effort to document bioinformatics resources

    Get PDF
    Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand. Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners. As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools

    Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Get PDF
    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit
    corecore